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Abstract More often than not, recently popular structuralist interpretations of physical

theories leave the central concept of a structure insufficiently precisified. The incipient

causal sets approach to quantum gravity offers a paradigmatic case of a physical theory

predestined to be interpreted in structuralist terms. It is shown how employing structur-

alism lends itself to a natural interpretation of the physical meaning of causal set theory.

Conversely, the conceptually exceptionally clear case of causal sets is used as a foil to

illustrate how a mathematically informed rigorous conceptualization of structure serves to

identify structures in physical theories. Furthermore, a number of technical issues infesting

structuralist interpretations of physical theories such as difficulties with grounding the

identity of the places of highly symmetrical physical structures in their relational profile

and what may resolve these difficulties can be vividly illustrated with causal sets.

Keywords Causal set theory � Quantum spacetime � Structural realism � Structure

Re-ignited by John Worrall in 1989 as a response to pessimistic challenges of scientific

realism based on historic sequences of false theories,1 structural realism is currently all the

rage in the general philosophy of science. Structural realism—ontically understood—has

also risen into prominence as a template to interpret contemporary physical theories over

the past decade or so. The former project was, and, to a lesser degree, still is, plagued by

notorious difficulties in explicating the notion of ‘structure’ independently of an ex post
facto identification of structure as that which is preserved through scientific revolutions.2

The latter project is typically exhausted by showing that, at least in some respects, the basic
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1 Cf. e.g. Worrall (1989, 117 and 121).
2 More recently, Worrall has explicated the structure of a theory in terms of its Ramsey sentence (cf.
Worrall and Zahar 2001). It is unclear, however, whether this type of structural realism can evade Newman’s
famous objection (cf. Ladyman 2009, §3.2).
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constituents of a physical theory are merely structurally identified as they fail to possess

some individuality or intrinsic identity.

Starting out from a rigorously defined set-theoretic characterization of structure in Sect.

1, this essay explicates its application to a physical theory, hoping to contribute to an

understanding of both these projects. The physical theory to be investigated is causal set

theory, an approach to finding a quantum theory of gravity. The main idea behind the

causal set approach is to strip spacetime down to its essentials (or less), impose dis-

creteness as an expected quantum signature, and try to obtain a complete theory of

quantum spacetime based on these simple assumptions. Even though the approach is still in

its infancy and offers less than a complete theory, its conceptual clarity and power elicits

admiration and promises to wipe a clean slate when many feel that large parts of estab-

lished physics will need to be given up in an attempt to obtain a fundamental theory of

quantum spacetime. Section 2 will introduce the main ideas of the theory and discuss its

two biggest challenges: to formulate a quantum dynamical law and to understand how

general-relativistic spacetimes emerge from the fundamental structure as postulated by

causal set theory.

The reason why causal set theory is of interest to the structuralist is because of its

conceptual simplicity and the resulting ease of characterizing the relevant physical

structure it postulates and the existence of which the structuralist wants to defend in case a

realistic attitude towards it will be warranted. Although others have gestured towards

structuralist interpretations of causal set theory, its full explication has hitherto not been

offered—it shall be explicated in Sect. 3. In the same section, a recently mounted challenge

for spacetime structuralism (Wüthrich 2009) shall be transposed into the context of causal

set theory, and different strategies to address the challenge are evaluated.

In Sect. 4 finally, we shall go for bigger prey and discuss the larger issue of the

tenability of structuralist interpretations of scientific theories in the light of the results of

Sect. 3 and considerations concerning how they may or may not generalize. In particular,

this essay draws a sharp distinction between a structuralist interpretation of a particular

physical theory on the one hand and structural realism as a wholesale recipe to offer a

Third Way between the Scylla of the pessimistic meta-induction and the Charybdis of the

no-miracles argument. It will conclude that the foregoing considerations support the former

(modulo the difficulty of dealing with causal sets of high degrees of symmetry), but do not

at all—or only weakly—support the latter.

1 The Set-Theoretical Conception of Structure

The structuralist analysis of the failure of standard scientific realism in the face of the

pessimistic meta-induction concluded that the reason why standard scientific realism did

not escape its devastating force was because it insisted on an ontology of ‘things’.3 In

effect, the pessimistic argument was able to unleash its full potency because standard

versions of scientific realism read off the surface ontology of objects from the theory only

too readily. Consequently, the structuralist concluded, once the realist steers clear of

objects and limits her ontological commitment to the deep structure postulated by the

theory at stake, then this realist commitment will not be frustrated by a succession of

theories with rather different surface ontologies. The problem then, of course, was to

independently identify the deep structure a theory postulated. While this issue did not see

3 Henceforth, I confine myself to ontic structural realism (cf. Ladyman 1998).
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much progress during the 1990s—and sometimes enjoyed frustratingly scant attention in

the literature—, it was usually assumed to be captured by the similarity of the relevant

equations, following Worrall (1989).4 The mathematical structure of equations often does

of course grasp the structure of what is postulated by the theory to physically exist, but it

should be noted that the mathematics of a theory alone can be very similar for completely

dissimilar physical ‘stuff’, while theories trading in more or less the same physical exis-

tents may be formulated in terms of rather different mathematics. In fact, one and the same

theory may afford distinct mathematical formulations with correspondingly distinct

mathematical structures.5 What ultimately has to matter to the structural realist is the

physical structure towards which we are asked to entertain a realist attitude.

Regardless of what exactly a structure was, structural realist sometimes insisted, and a

few continue to insist,6 that their analysis showed that there couldn’t fundamentally be any

objects. Instead of fundamental objects, they claimed, ‘‘it’s relations all the way down’’—

in Stachel’s (2006, 54) memorable paraphrase of Saunders’s (2003, 129) ‘‘it is turtles all

the way down’’—notably without there fundamentally being any relata to exemplify these

relations. More specifically, it is claimed that whatever relata may exemplify the relations

‘‘always turn out to be relational structures themselves on further analysis.’’7 Many have

complained that such a proposal was simply unintelligible.8 This is not the place to

rehearse the standard moves along this well-troden path. Suffice it to mention that the

standard, set-theoretic conceptualization of structure necessitates the simultaneous postu-

lation of relations as well as their relata.9

Let’s explicate this set-theoretic notion of structure, then. The usual, albeit typically

tacit, concept of structure assumed in philosophy is that of a relational structure, i.e. a set-

theoretic notion found in mathematical logic according to which a structure S is an ordered

pair hO;Ri which consists of a non-empty set of relations R (‘ideology’) as well as a non-

empty set of relata O (‘ontology’), the domain of S. More generally, a structure consists of

a set of elements together with a collection of finitary functions and relations defined on the

set. More precisely, a structure A is an ordered triple hA;Rn;Fni consisting of a domain (or

universe) A, a (usually countable) set Rn of n-ary relations, and a (usually countable) set Fn

of n-ary functions.10 The domain A of A; sometimes also denoted domðAÞ; is just an

arbitrary, usually non-empty, set. A function f is n-ary just in case there exist sets

4 More often than not, this assumption was only implicit or, at best, gestured at. A laudable exception is
Bain and Norton (2001).
5 It has been argued that this very fact constitutes an argument in favour of structural realism (Ladyman
1998, 418ff; Bain 2006). While I concur with Jones (1991) that this creates a problem for someone who is
predisposed to read off the ontology directly from the formalism, I remain unconvinced that this lends
support to structural realism, for reasons similar to those given by Pooley (2006, §4.2).
6 E.g. French (2010).
7 Ladyman (1998, §4). It should be noted that Stachel (2006) does not advocate this position.
8 For a representative list, cf. Bain (forthcoming, §2).
9 It seems to me that a category-theoretic notion of structure in the sense of Bain (forthcoming) is the only
promising path to a possible extermination of the relata from what exists fundamentally, even though I
remain sceptical that it can ultimately succeed (cf. Lam and Wüthrich 2012).
10 Even more precisely, given that the distinction in mathematical logic between relations and functions on
the one hand and symbols representing them on the other, a structure can be defined as the ordered 5-tuple

hA; �Rn; �Fn; ar; Ii consisting of a domain A, a set of n-ary relations symbols �Rn; a set of n-ary function

symbols �Fn; a function ar : �Rn [ �Fn ! N0 which assigns a natural number (including 0) called arity to every
symbol in Rn[ Fn, and an interpretation function I assigning functions (and constants) and relations to the

symbols in �Fn and �Rn. In what follows, I shall speak loose and fast in that no distinction will be made
between a symbol r and its interpretation I(r).
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X1; . . .;Xn; Y such that f : X1 � � � � � Xn ! Y ; where X1 � � � � � Xn is the Cartesian

product of X1; . . .;Xn. The Cartesian product X1 � � � � � Xn of X1; . . .;Xn is defined as the

set of all ordered n-tuples hx1; . . .; xni such that for all i ¼ 1; . . .; n; xi 2 Xi. An n-ary
relation defined on sets X1; . . .;Xn is a set of ordered n-tuples hx1; . . .; xni; where xi 2 Xi for

all i ¼ 1; . . .; n. Thus, an n-ary relation on sets X1; . . .;Xn is just a subset of the Cartesian

product X1 � � � � � Xn of these sets.11 Without loss of generality (see footnote 11), we

confine ourselves to relational structures, i.e. to structures with Fn ¼ ;.
This standard notion has recently received critical scrutiny from various authors.

Leitgeb and Ladyman (2008) explore a graph-theoretic notion of structure,12 and Roberts

(2011) proposes a group-theoretic one. Landry (2007) argues for conceptual pluralism in

that a restriction to the standard notion (or any one notion, for that matter) cannot do justice

to the plethora of applications. Muller (2010) makes the case that a thoroughgoing

structuralism should not rely on a conceptualization of structure that rests on a definition in

terms of more basic concepts. Instead, he argues, structure should be given as a primitive,

encoded in an axiomatization. Since the set-theoretic notion, however, is both standard and

adequate given my purposes, the focus shall be on it in what follows.

For our work below, it will become important to be able to compare structures. In

particular—and this also matters to the structural realist who wants to escape the pessi-

mistic meta-induction by identifying structures that are preserved through successions of

theories—, we need a notion of structural identity, i.e. we need some criteria as to when

two structures are ‘identical’. Since we are interested in physical structures, and these

structures can only be in re,13 we need a conceptual apparatus to articulate how two

physical ‘things’ existing in the same possible world, or how the physical existents in two

different possible worlds (or sets thereof), can have the ‘same’ structure. For instance, the

inter-mundial version of structural identity is required to determine whether the physically

possible worlds according to one theory are structurally identical to those worlds possible

according to its successor, or at least partially so. In other words, it appears to be needed to

precisify the structural continuity that a structural realist asserts of successive scientific

theories.

Roughly, a ‘homomorphism’ is a ‘structure-preserving’ map from one structure to

another. If a bijective homomorphism has an inverse that is also a homomorphism, then we

say that it is an ‘isomorphism’. Isomorphisms are usually used to capture the structural

identity we are seeking: two structures A and B are structurally identical just in case they

are isomorphic, denoted A ’ B; i.e. iff there is an isomorphism from A to B. Note that

this sense of identity is weaker than that of (strict) identity, since in general

domðAÞ 6¼ domðBÞ. An isomorphism from a set onto itself is an automorphism. In this

case, the domains are identical.

11 For those with a penchant for ever higher levels of generality, (n-ary) functions can also be defined as
((n ? 1)-ary) relations.
12 Note, however, that a graph-theoretic rendering of what it is to be a structure may reasonably be
considered a form of representing a set-theoretically defined structure, rather than offering an alternative,
and inequivalent, characterization. For more discussion of structures and their representations, cf. Lam and
Wüthrich (2012).
13 As opposed to ante rem, to use Shapiro’s (1997) distinction. In re structuralism maintains that the
physical system which exemplifies a certain structure is ontologically prior to the abstract mathematical
structure, i.e. the isomorphism class of ‘identical’ structures. In contrast, ante rem structuralism maintains
that abstract structures exist and are ontologically prior to any physical exemplification of it (or at least
ontologically independent of them).
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To state all of this somewhat more rigorously, suppose we are given two structures A
and B with the same set of relations defined over their (generally distinct) domains.14 A

homomorphism from A to B is a map / : A! B which preserves the functions and

relations, as follows: (1) for any n-ary function f in Fn and any elements a1; . . .; an 2
A;/ðf ða1; . . .; anÞÞ ¼ f ð/ða1Þ; . . .;/ðanÞÞ; and (2) for any n-ary relation R in Rn and any

elements a1; . . .; an 2 A; ða1; . . .; anÞ 2 Rn ) ð/ða1Þ; . . .;/ðanÞÞ 2 Rn. A bijective map / :
A! B is called an isomorphism just in case both / and its inverse /-1 are homomor-

phisms. Two structures A and B are called isomorphic, denoted by A ’ B; or structurally

identical, iff there exists an isomorphism i : A! B: If A ’ B and A = B, then we say that

A and B are automorphic and the relevant isomorphism is called an automorphism.

This concludes our brief statement of the set-theoretic notion of structure. We are now

ready to see it applied in a concrete case.

2 Introducing Causal Sets

The relevance of quantum effects and the presence of strong gravitational fields in the early

universe as well as in black holes necessitates a quantum theory of gravity, i.e. a theory that

combines (possibly classical) gravity with quantum theories of matter in order to describe

their interaction. To many—though not to all—, this means to quantize gravity, i.e. to

formulate a theory that either results from some regimented quantization procedure applied

to the classical gravitational field or directly relies on postulates which codify the quantum

structure of the gravitational field or of spacetime. The causal set theory attempts the latter:

it encodes in its two kinematic axioms the basic idea of the quantum analogue of spacetime

as something essentially discrete that is structured by causal relations and hopes to show

that at appropriately large scales, this discrete quantum structure approximates the smooth

metric manifolds that represent spacetime in general relativity. Thus, the founding prin-

ciple of causal set theory is the idea that the fundamentally discrete structure consists of a

partially ordered set of elementary events, and that this ordering is essentially causal.15

Even though the discreteness and the fundamental role of causality are stipulated

ab initio in causal set theory, it is of course not the case that this stipulation is unmotivated.

Important results in the 1970s made it clear that in general relativity, the causal structure of

a spacetime determines its geometry (but not its ‘size’). Theorems by Hawking et al.

(1976) and Malament (1977) established that given the causal structure and volume

information, one finds the dimension, the topology, the differential structure, and the

metric of the manifold. These results kindle the hope that minimal assumptions concerning

causality at the fundamental level may suffice to recover almost all the requisite structure

we care about in general-relativistic spacetimes and thus motivate the causal sets approach

in assuming that the fundamental structure is a ‘causal set’.

14 An attentive reader may wonder how purely extensionally defined relations may be the ‘same’ if defined
over two different sets. This difficulty is circumvented in the more precise language of mathematical logic
where symbols denoting relations are distinguished from the relations they denote. Strictly speaking,
therefore, the signatures of the two structures (i.e. their sets of relation symbols) must be the same, but not,
of course, the interpretation of these symbols.
15 The original paper that got everything started is Bombelli et al. (1987), even though there are clear
historic precursors in Myrheim (1978) and ’t Hooft (1979). For serviceable reviews of the causal sets
approach, cf. Dowker (2005), Henson (2009), and Reid (2001). As far as I am aware, the philosophical
reception is exhausted by brief discussions in Butterfield (2007, §5.2), Earman (2008, §7), Smeenk and
Wüthrich (2011, §8), and Stachel (2006, §3.7).
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The discreteness is justified, advocates of the approach claim, by both physical as well

as technical reasons. Among the latter, it is argued (in Henson 2009, 394) that the lack of

short-distance cut-offs in the relevant degrees of freedom leads to a host of infinities in

general relativity and quantum field theory and that at least those infinities not resolved by

renormalization are best cured by assuming a smallest spatial distance. But these diffi-

culties—at least in general relativity—simply result from insisting on forcing general

relativity on the Procrustean bed of perturbation theory, an insistence dropped in so-called

background-independent approaches such as loop quantum gravity and causal dynamical

triangulations. Similarly, technical problems in defining path-integrals on a continuous

history space can be avoided by assuming fundamental discreteness. Quite generally,

Henson (ibid.) argues, discreteness affords a conceptual utility in that it often significantly

reduces the technical complexities physicists face. But without a metaphysical commit-

ment to the simplicity of nature, there is no reason to think that the actual world is

fundamentally discrete just because assuming so mitigates our mathematical struggles.

But there are also physical motivations for believing that the fundamental structure

may be discrete. First, what Henson considers ‘‘perhaps the most persuasive argument’’

(ibid.) is that without a short-distance cut-off, the finiteness of the semi-classical black

hole entropy cannot be obtained. For this argument to be persuasive, however, the

importance of keeping the black hole entropy finite must be accepted. Suffice it to point

out that the Bekenstein formula for the black hole entropy is derived in semi-classical
quantum gravity, i.e. by mixing and matching physical principles of which we cannot be

certain will be licensed by a full quantum theory of gravity. To be sure, the confluence of

independent lines of reasoning to Bekenstein’s functional expression for the entropy of

black holes is suggestive. But this argument from black hole entropy to discreteness

could be turned around; i.e. it could be argued that given that the full quantum theory of

gravity trades in a continuous fundamental structure, Bekenstein’s formula cannot be

right. A second physical reason is offered by Reid (2001, 6): the local conservation of

energy suggests that photons with infinite energies do not exist and an effective way of

ascertaining this is by assuming that time—and therefore, by relativity, space—is dis-

crete. No doubt this is a possibility; but in itself, it falls short of offering a conclusive

argument.

The most puzzling justification for discreteness comes also from Henson (ibid.). Since

various approaches to quantum gravity assume, suggest, or entail that the fundamental

structure is discrete, he argues, it is only reasonable for causal set theory to postulate

discreteness. But of course, these competing theories will not be true if causal set theory is;

so why should this lend any credence to causal set theory? Perhaps the idea is to show that

given the agreement of rather diverse programmes in that the fundamental physical

structure is discrete, we should be confident in what they concur on. But since the dis-

creteness is a stipulated a priori in causal set theory, it is certainly not the case that the

causal set programme adds any support to the hypothesis of discreteness. But this brings us

back to the problem how this assumption is justified via an inter-theoretic agreement unless

at least one of the competing theories is true. Either way, then, if we take the causal set

programme’s ambition to be the providing of a full quantum theory of gravity, then any

inter-theoretic concurrence about the discreteness of the fundamental structure cannot offer

any support for the programme’s stipulation. But perhaps such ambition is not harboured

by the programme and it merely strives to give a conceptually simple and clear line of

attack to gain some understanding of potential features of a full theory. If therefore no

claim as to the truth of its basic premises is implied, then this convergence can act as

evidence for its physical relevance and thereby justify interest in this approach.
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Hence, none of these arguments offers direct evidence for discreteness. But this may not

deter us as ultimately, of course, the postulates of a theory are justified by the theory’s

success. If the theory aspires to be true and fundamental, only unconditional and complete

empirical confirmation will be able to elevate it to that status. If the theory is less ambitious

and just aims to provide a toy theory which usefully models some features that a more

complete and fundamental theory is expected to have, then it just needs to establish that

these features reappear indeed in the fuller theory and lend credence, either via theoretical

or empirical support, to its claim to model them with relevant similarity.

2.1 The Kinematics of Causal Set Theory

The fundamental structure is a causal set C; i.e. an ordered pair hC;�i consisting of a set C
of elementary events and a relation, denoted by the infix �; defined on C satisfying the

following conditions:

Axiom 1 (Partial ordering) � induces a partial order on C, i.e. it is reflexive

(8a 2 C; a � a), antisymmetric (8a; b 2 C; if a � b and b � a; then a = b), and transitive

(8a; b; c 2 C; if a � b and b � c; then a � c).

Axiom 2 (Local finitarity) 8a; c 2 C; cardðfb 2 Cja � b � cgÞ\;1.

These two simple axioms determine the kinematics of causal set theory and have been

motivated above. Axiom 2 encodes the discreteness of causal sets. Interpreting the relation

� causally, Axiom 1 precludes any causal loops. In other words, time travel is ruled out by

stipulation. This may or may not be physically costly, but it should be noted that however

causal set theory will relate back to general relativity, it will not be able to reproduce the

full theory as general relativity permits time travel in the sense of causal loops (cf. Smeenk

and Wüthrich 2011).

Causal sets can be illustrated by so-called Hasse diagrams, graph-theoretic represen-

tations of finite partially ordered sets. In these diagrams, the vertices represent elements of

C and edges connecting the vertices represent their standing in relation �. Since � is

reflexive and transitive, only a causal set’s ‘transitive reduction’ is drawn, i.e. we do not

connect vertices directly which are already connected via intermediate vertices.16 Fur-

thermore, since it is understood that � is reflexive, we also don’t clog the diagrams by

drawing edges from each vertex back to itself. An example of a simple causal set is

represented in Fig. 1. This is strictly speaking not a Hasse diagram as its edges are adorned

with arrowheads, which have been introduced in the present context to emphasize the fact

that the relation they represent is antisymmetric.

2.2 Steps Towards a Dynamics of the Theory

Even though the basic kinematic rules in Sect. 2.1 give essentially the complete structure

of causal sets, they don’t give the full theory. Causal sets are dynamical entities in that they

grow by the ‘birthing’ of additional elements to the causal future of the existing causal set.

Among different proposed dynamical rules, the classical sequential growth dynamics

16 The transitive closure of a binary relation R on a set X is the intersection of all transitive relations on X
that contain R. The transitive reduction of a binary relation R on a set X is the smallest relation on X which
has the same transitive closure as R.
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proposed by Rideout and Sorkin (1999) has been most influential.17 In this dynamics,

causal sets ‘grow’ by a discretized, stochastic Markov process.18 This growth process starts

out from the empty set and adds, one by one, new elements to the future of the existing

ones, following a directed path in Fig. 2, which shows all possible routes an evolution can

take. More precisely, if an auxiliary, i.e. non-physical, external time is introduced to label

the events in order of their birth, then the events’ labels l 2 N0 must obey the condition that

Fig. 2 The partially ordered set of finite causal sets (with the arrowheads within each causal set now
omitted)

Fig. 1 (Almost) a Hasse diagram of a causal set

17 See also Varadarajan and Rideout (2006).
18 A Markov process is a dynamical process whose transition amplitudes are such that the corresponding
probabilities satisfy a Markov condition, which states, roughly, that the probabilities for the transitions only
depend upon the ‘initial’ and the ‘final’ state, but not on what transpired before the ‘initial’ state.
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if x � y; then l(x) B l(y). This demand is called internal temporality. It is important to note

that the converse implication does not hold, as new events may be spacelike related to all

existing ones.

This labelling will introduce representational surplus structure in that e.g. the causal

set in the centre of the top line in Fig. 2 can be reached via two different paths and hence

can occur with two inequivalent labellings.19 Causal set theorists codify their demand

that the labels carry no physical meaning in the requirement for discrete general
covariance, which asserts that the transition probability between two causal sets related

dynamically as along a directed path as in Fig. 2 is path-independent insofar as the

product of the transition probabilities along each path must be the same. Discrete general

covariance ensures that the labels used in the growth sequence are ‘pure gauge’.20 This

means that the true dynamical content of the theory is contained in, and exhausted by, the

transition amplitudes and not—emphatically—in the path along which a causal set is

thought to grow.

The structure P consisting of the set of finite causal sets representing all different

dynamical stages a growing causal set can assume is again partially ordered. The ordering

relation is not a causal relation as it was at the kinematic level, but instead a parent-child
relation which takes finite causal sets as its relata. Two finite causal sets are related by the

parent-child relation just in case one can be obtained form the other by accreting an event

to the latter in accordance with internal temporality. The structure P can again be repre-

sented by a Hasse diagram, as shown in Fig. 2. It should be clear that P has a first

element—the empty set—, but no last element.

Furthermore, a condition of relativistic causality is typically imposed. Without going

into any technical detail here, the idea behind such a ‘Bell causality’ assumption is that

what transpires at spacelike separation from the node to which the newborn event is

cemented ought not to influence the corresponding transition amplitude. It can be shown

that, together with discrete general covariance, an intuitive notion of ‘Bell causality’

imposes strong constraints on the dynamics.21

All of this remains entirely classical, even though stochastic. No pretension is made to

model effects arising from quantum interference. No superpositions of causal sets are

considered. Surely, this gives us yet another reason for believing that causal set theory is

not a serious contender for a full quantum theory of gravity—at least not so long as no

genuinely quantum dynamics is offered. Researchers in causal set theory, of course,

admit as much and often consider classical sequential growth dynamics as a ‘warmup

exercise’.

The classical sequential growth dynamics is just one among many possibilities to

implement a dynamical evolution in the theory. In an attempt to curb the number of

possibilities, it, like others, imposes constraints such as discrete general covariance and a

Bell-type causal condition. These constraining principles certainly appear eminently rea-

sonable, but they lead to a serious problem: it seems as if they prescribe dynamics that tend

not to result in causal sets which give rise to manifold-like spacetimes (Georgiou 2005).

Let us address the issue of the emergence of classical spacetimes from causal sets then.

19 More precisely, three different labellings, since the third event can be related to either of the spacelike
related events in the causal set on the right of the card(C) = 2 generation.
20 Cf. Rideout and Sorkin (1999), Brightwell et al. (2002).
21 For the technical results, see Rideout and Sorkin (1999) and Varadarajan and Rideout (2006); for their
foundational appraisal, see Butterfield (2007).
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2.3 The Emergence of Classical Spacetimes from Causal Sets

For any quantum theory of gravity to succeed, it must be able to recover the classical

spacetimes of general relativity in the appropriate low-energy limit. Only if such a theory

can show how classical spacetimes emerge in the relevant sense—and thereby explain why

general relativity is as successful as it is—does it become a contender to supplant general

relativity. Thus, studying the relationship between discrete causal sets and continuum

spacetimes constitutes an integral part of the approach.22

What we would like to know, more specifically, is whether there exists an embedding of

a given causal set hC;�i into some relativistic spacetime hM; gabi; i.e. whether there is a

map / : C !M:23 This embedding should be faithful in that it satisfies the following

three conditions:

1. The causal relations are preserved, as follows: 8a; b 2 C; a � b iff /ðaÞ 2 J�ð/ðbÞÞ;
where J-(p) is the causal past of p, i.e. the set of points q 2M such that there exists a

future-directed causal curve from q to p (or q = p).

2. On average, / maps one element of C onto each Planck-sized volume of hM; gabi.
3. hM; gabi has no length scales smaller than the ‘discreteness scale’ of the causal set; for

instance, it is approximately flat below the Planck scale (the typical discreteness

scale).

If the third condition is violated, then the relativistic spacetime has features that the causal

set cannot hope to retrieve—it simply lacks the resources to incorporate below Planck-

scale phenomena. If there is a faithful embedding of a causal set into a relativistic

spacetime, it is common to say that the causal set at stake is manifold-like.

The hope now is that if a faithful embedding of the causal set into a relativistic

spacetime exists, it is essentially unique insofar as if /0 : C !M0 is a faithful embedding

into another relativistic spacetime hM0; g0abi; then the two spacetimes are approximately

isometric, at least at scales above the discreteness scale. This hope, captured in what is

often referred to as the ‘causal set hauptvermutung’, has so far not been substantiated by

proof.

Moreover, as it turns out it is far from trivial to determine whether a given causal set

indeed gives rise to a relativistic spacetime. Because of this, let us consider the reverse

direction from relativistic spacetimes to causal sets in the hope to glean some lessons that

may apply to the original direction. In considering how to find a manifold-like causal set

starting from a continuum spacetime, we first notice that the general recipe to do this is by

‘sprinkling’ points onto the manifold approximately in proportion to the volume of the

spacetime regions. Next, the causal structure of the spacetime is used to determine ordering

relations among the sprinkled points, i.e. to establish the precedence relation � among the

sprinkled points. Using this recipe, we are guaranteed to obtain a causal set that can be

faithfully embedded into the spacetime from which we started out.

In order for the embedded causal set to be invariant under Lorentz transformations, not

just any old way of sprinkling will do. In particular, regular sprinkling patterns such as

Planck-length-spaced lattices will not be Lorentz invariant as the boosted lattice may have

22 The term ‘emergence’ is not intended in the philosophers’ sense in which it designates a not even weak
reducibility; rather, it is used in the physicists’ sense of an umbrella term for reducibility broadly
understood.
23 For a recent review of the problem of the emergence of space in particular from causal sets, see Rideout
and Wallden (2009).
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strongly varying point densities across the manifold (Dowker et al. 2004). The way to

protect the embedding against a loss of Lorentz invariance is by sprinkling the points

randomly. Causal set theory uses a Poisson process where the probability of sprinkling

N points into a spacetime volume is given by a Poisson distribution. Since Poisson pro-

cesses in R
n are invariant under any volume-preserving map and the Minkowski volume

element equals the Euclidean volume element in R
n; the Poisson sprinkling exhibits exact

Lorentz invariance for Minkowski spacetime (Dowker 2005, 451). Since the volume

element of general-relativistic spacetimes will not equal that of Euclidean space, the

Lorentz invariance of the sprinkling will in general only hold locally.

The question of the emergence of spacetimes from causal sets is riddled with what

Smolin (2006, 211) has dubbed the inverse problem for causal sets, viz. the fact that almost

no causal sets can be faithfully embedded into a relativistic spacetime. This may in itself

not constitute a severe problem, if we had some physically well-motivated principle that

permitted the selection of the subset of the manifold-like causal sets among all kinemat-

ically or dynamically possible ones. As I mentioned in Sect. 2.2, classical sequential

growth dynamics fails to offer a dynamical mechanism that would drive the causal sets to

grow such as to render them manifold-like. Generally, causal set theory does not have the

resources to select in a principled way, or a dynamical principle to generate, those causal

sets that approximate low-dimensional relativistic spacetimes.24

3 A Structuralist Interpretation of Causal Set Theory

It is straightforward to interpret the causal sets postulated by causal set theory in struc-

turalist terms, i.e. as structures.25 The domain O of the structure C is C, the set of ele-

mentary events, and the set R of relations defined on the domain is exhausted by �. For the

structuralist, it matters that the elements of C do not have intrinsic individuality—they are

completely featureless events which assume their identity merely by virtue of the position

they occupy in the structural complex C. The relation � is the only concrete physical

relation. The structure of causal sets is completely exhausted by the kinematic axioms

Axiom 1 and Axiom 2, perhaps amended by the dynamical rules specified in Sect. 2.2. It is

thus evident that causal sets offer what is arguably the most straightforwardly structuralist

example of a physical entity postulated by any physical theory.

Of course, structuralist interpretations of the physics of other theories have been pro-

posed.26 In particular, it has been claimed that structuralism (or structural realism) about

spacetime naturally dissolves the indeterminist trap into which a (naive) substantivalist

stepped in the face of the hole argument in general relativity, while still maintaining a form

of realism about spacetime, thereby avoiding a number of difficulties for the relationalist.

According to the structuralist, spacetime ought to be interpreted as a physical structure, i.e.

as a structural complex constituted by physical objects—the relata—and by the concrete

physical relations in which they stand. Usually, this is rendered as taking the points of the

24 The role of time and of the dynamical principles considered in causal set theory is a subtle business and
will have to be analyzed on another occasion.
25 I am not the first to notice: cf. Brightwell et al. (2002, 8), Smolin (2006, §7.2.1), and Stachel (2006,
§3.7). It should be noted however, that the first two don’t make explicit use of the label ‘structuralism’, and
the last one only offers a rather concise assertion to this effect.
26 E.g. general relativity, non-relativistic quantum mechanics, and quantum field theory; cf. Ladyman et al.
(2007, Ch. 3), Esfeld and Lam (2008, forthcoming).
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manifoldM as the set of physical objects and the metrical, i.e. spatio-temporal, as well as

the dynamical properties they exemplify as the concrete physical relations. As articulated,

e.g., in Esfeld and Lam (2008, §2), spacetimes are thus identified with an equivalence class

of diffeomorphically related models of general relativity. The hole argument trades on the

intrinsic individuation of manifold points prior to, and independent of, the spatio-temporal

relations in which they stand. Such individuation is what forces the conclusion that dif-

feomorphically-related models of general relativity must represent genuinely distinct

physical situations; and it is exactly this individuation which is denied by (all versions of)

ontic structural realism about spacetime.

It has been shown (Wüthrich 2009) that the important family of relativistic cosmo-

logical models called Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) spacetimes chal-

lenge this structuralist interpretation of spacetime. An important feature of these

spacetimes is that the four-dimensional spacetime permits a privileged foliation into three-

dimensional spaces parametrized by a one-dimensional so-called cosmological time.

Another important feature of them is that they encode the demand issued by the ‘Cos-

mological Principle’ that, at any time, there be no privileged spatial location in the uni-

verse. In other words, there cannot be any physical property had by any point in the

universe that is not also had by all other points at the same cosmological time. If a point

cannot differ in its properties, including its relational properties, from any other point in

space, then the ‘Principle of the Identity of Indiscernibles’ (PII) appears to demand that

they be identified. PII holds that for any two objects, if they share all—possibly rela-

tional—properties, then they are identical. If sound, this argument establishes that the

spacetime structuralist is committed to the absurd claim that FLRW spacetimes consist of

only one point for any given value of cosmological time—a pointlike universe!27

It has been suggested, most vigorously in Muller (2011), that the introduction of irre-

flexive relations resolves the difficulty insofar as these relations render the relata weakly
discernible, i.e. the relata are numerically distinct by virtue of them exemplifying an

irreflexive relation.28 The symmetry problem disappears since for an irreflexive relation to

be exemplified at all, there must be two numerically distinct objects. There is the general

worry with this resolution, of course, that the assumption of there being an irreflexive

relation exemplified in the physical structure at stake means, eo ipso, that there are two

numerically distinct objects exemplifying the relation.29 If the point of this resolution was

that numerical plurality was to be derived, rather than stipulated, then it seems to fail.

In causal set theory, the only physically admissible fundamental relation is reflexive,

thus not directly amenable to the move proposed by Muller. But it is straightforward to

concoct an irreflexive relation from a reflexive one. First, define the reflexive reduction
R = of a binary relation R over a set X as R n fhx; xijx 2 Xg; i.e. the reflexive reduction

R = of a possibly reflexive relation R is exemplified by exactly the same pairs of objects

as R except for those pairs when the objects in both slots of the binary relation are identical.

27 There are several ways to evade the strictures of this argument, as explained in Wüthrich (2009). One
could, of course, assert that identity (or at least numerical plurality) is primitive, as do e.g. Leitgeb and
Ladyman (2008), thus rendering the application of PII otiose. I wish to thank an anonymous referee for
keeping me honest on this point. I shall assume, in what follows, that identity is contextual rather than
primitive.
28 A binary relation R on a set X is irreflexive just in case 8x 2 X;:Rxx:
29 To claim that weak discernibility may be used to introduce an identity relation to a language without
identity amounts to an insistence that the pertinent relation is primitively irreflexive. Thus, just as in footnote
27, such a claim is tantamount to accepting non-structural facts, a possibility I acknowledge without
pursuing it here.
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In fact, some authors contributing to the physics literature on causal sets characterize the

fundamental relation exactly as the reflexive reduction of the one defined in Axiom 1.30

Second, convince yourself that not much physically hangs on whether the fundamental

relation is reflexive or irreflexive. To this end, define a strict partial order as a binary relation

that is irreflexive and transitive, and hence asymmetric.31 If we denote strictly ordered causal
sets ordered pairs hC;�i of sets C of elementary events endowed with a strict partial ordering

relation, denoted by the infix �; and satisfying Axiom 2, then there is a bijective corre-

spondence between causal sets and strictly ordered causal sets. To see this, suppose the set C
is the same for both. Then given the reflexive relation� inducing a non-strict partial order on

C, we can always introduce an irreflexive relation � given by the reflexive reduction �6¼
such that 8x; y 2 C; x � y just in case x � y and x = y. Conversely, given the irreflexive

relation� inducing a strict partial order on C, we can always introduce a reflexive relation�
given by the reflexive closure �¼ such that 8x; y 2 C; x � y just in case x � y or x = y.

Generally, the reflexive closure R= of a binary relation R over a set X is defined as fhx; xijx 2
Xg [ R; i.e. the reflexive closure R= of a possibly irreflexive relation R is exemplified by those

pairs of objects which either exemplify R or take identical objects in both slots.

It is clear that a causal set C ¼ hC;�i cannot be isomorphic to its strictly partially

ordered counterpart Cs ¼ hC;�i since no map between them will preserve the one and only

relation of the structure either way. Thus, strictly speaking, causal set theory and ‘strict

causal set theory’ are inequivalent as they describe non-isomorphic structures. But to

conclude from this that there is any physically interesting difference between either these

two theories or the structures they describe would nevertheless be misguided as the the-

ories are still empirically equivalent.32 It appears to make good empiricist sense to be

indifferent regarding a possible preference between causal set theory and its strict cousin.

Thus, causal set theorists might as well have formulated the entire theory in terms of a

basic relation that is irreflexive.33

Returning to the symmetry problem, and ignoring the general worry concerning Muller’s

fix based on weak discernibility above, the structuralist may therefore hope that she has been

handed the necessary tools to deal with the symmetry problem. Upon inspection, however,

one quickly notes that the irreflexivity of the one and only physical relation only affords a

partial resolution of the problem. Suppose the causal set exhibits a high degree of synchronic
symmetry in that every element in a given ‘horizontal’ generation Gi exemplifies exactly the

same relational properties as any element of the same generation, as depicted in Fig. 3, where

points represent the elements of C and the arrows between them the relation � (rather than

�). This leads directly to a problem of synchronic plurality in that the PII suggests, once

again, for causal sets relevantly like the one depicted in Fig. 3, that each generation Gi

consists of just one element. It seems as if on a purely structuralist reading, and using PII, for

all the generations Gi, all the points in it ought to be identified. This was essentially the

symmetry problem as encountered for highly symmetric spacetimes in general relativity.

Note that there is no analogous problem of diachronic plurality, since� is asymmetric. It is

of course no surprise that within a generation, the irreflexive relation does not dissolve the

difficulty, as it cannot obtain between spacelike separated elements.

30 Cf. e.g. Dowker et al. (2004).
31 A binary relation R on a set X is asymmetric just in case 8x; y 2 X; if Rxy, then :ðRyxÞ:
32 Exercise for the reader: try to exploit the difference between causal set theory and its strict analogue to
define an empirically tangible difference of the emergent spacetimes that they engender.
33 And in fact, some do: cf. footnote 30.
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It is worth noting that in slightly less symmetric cases, such as the one of an ‘expanding’

universe as in Fig. 4, not all points within a generation ought to be identified—even though

there are subsets of points in each generation that share a relational profile. In generation G1

in Fig. 4, for instance, the leftmost and the rightmost points share all genuine physical

properties and should thus be identified, in accordance with PII. The same applies to the two

central points. Instead of the four points represented in G1 in Fig. 4, therefore, PII only

identifies two events in the corresponding generation of the physical structure. This may

serve as an indication that the strict symmetry is rather fragile in the sense that the vast

majority of admissible causal sets do not exhibit symmetries challenging a structuralist

interpretation.

Concerning potential problems of diachronic plurality, it was noted in Sect. 2.1 that the

antisymmetry assumed in Axiom 1 prohibits causal loops. But even if antisymmetry is

dropped, a structuralist interpretation of causal set theory deprives the theory of the

resources to deal with causal loops, for reasons essentially the same as for the symmetric

causal sets.

To see why, let us suppose that antisymmetry is omitted from Axiom 1.34 We are then

left with what is called a transitive digraph. If a causal set is merely a transitive digraph

(rather than a partially ordered set), then there will be, in general, cycles in the sense that

9a; b; c 2 C; a � b � c � a. As a result of transitivity, any points a and b on the cycle will

be relationally indistinguishable: 8x; y 2 C; if x � a; then x � b and vice versa, and if

a � y; then b � y.35 Since points on loops can thus not differ in their relational profiles and

the structuralist assumes that the elementary events of causal sets are intrinsically fea-

tureless, PII entails that all points on a loops are identical. But of course if all points on a

loop are one and the same, then there is no loop, but just a lonely point. This means, quite

Fig. 3 A symmetric causal set

Fig. 4 A growing causal set

34 I wish to thank Fay Dowker for substantive discussions on this point.
35 This is so because causal sets are ‘transitively closed’ (cf. footnote 16).
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generally, that transitive-digraph causal set theory cannot distinguish between causal loops

and points in a causal set. Thus, either causal loops are ruled out ab initio (as they typically

are, by assuming antisymmetry), or they immediately collapse to points, at least as long as

we insist that elementary events have no intrinsic identity.

Since there are spacetimes with causal loops in general relativity and the points on these

curves can be distinguished metrically (for instance by their distance to a fiducial point), no

causal set could ever give rise to a spacetime-cum-causal loops, regardless of whether this

causal set is conceived of as a partially ordered set or a transitive digraph. That a causal

approach to discrete spacetime such as causal set theory cannot deal with closed timelike

curves is not surprising, since these approaches are built upon Malament’s (1977) insight that

the metric is fixed, up to a conformal factor, by the causal structure—but only for spacetimes

which satisfy a slightly stronger condition than that they do not contain causal loops.

Even though the symmetry problem thus resurfaces in causal set theory, the fragility

mentioned three paragraphs ago indicates that the problem is not as grave as it is in general

relativity. There, the symmetric spacetimes à la FLRW are arguably of measure zero in

the space of all admissible spacetime models—even though the space of solutions to the

Einstein field equations remains unknown. To take this as ground for dismissing the

difficulty, however, was particularly unpalatable in general relativity since the FLRW

models are of such great theoretical importance (Wüthrich 2009).

Returning to causal set theory, just how generic are these highly symmetric causal sets

among all the kinematically possible ones? Even though this issue is hard to tackle ana-

lytically, one naturally conjectures that the fraction of highly symmetric causal sets quickly

becomes very small as the cardinality of C increases. Moreover, there is no reason to think

that these highly symmetric possibilities are of particular physical relevance, as generic or

non-generic these may be. In fact, there are grounds for thinking that they are not phys-

ically relevant: even FLRW and similarly symmetric spacetimes generically emerge from

causal sets not exhibiting these perfect symmetries. That this is so is suggested by the fact

that a faithful embedding of a causal set into a manifold can straightforwardly be obtained

by randomly sprinkling points (at an appropriate density) into an FLRW spacetime and

asserting causal relations between any pair of them according to the light cone structure.

This will generate, ex constructione, a causal set that is faithfully embeddable into the

FLRW spacetime. The random sprinkling, importantly, is required to guarantee the local

Lorentz symmetry, as a sprinkling onto a regular lattice would not leave the average

number of points in a volume invariant under Lorentz transformations.36

The fact that causal sets thus necessitate a certain irregularity gives the structuralist

reassurance that the symmetry problem vanishes in causal set theory. This, in turn, indi-

cates that the problem may disappear altogether in a full theory of quantum gravity.

4 Zooming Out: Implications for Structural Realism

By way of conclusion, I wish to step back and take (admittedly preliminary) stock of the

situation for the structuralist with respect to fundamental theories of gravity, as well as

more generally in philosophy of science. In order to do that, let me distinguish two

different structures that might be relevant here. First, a particular model of a theory is a

mathematical structure that is claimed, by the theory, to represent a physically possible

world according to that theory. Second, the theory itself, i.e. the set of models, has a

36 In fact, the causal set depicted in Fig. 3 is not even manifold-like (Henson 2009, §1.3).
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structure. This structure, too, is a mathematical structure encoded in the mathematical

formulation of the theory. The mathematical structure of the theory and that of its models

may of course be related, but they need not be. Applied to causal set theory, the structure of

a model of the theory is the structure of a particular causal set as explicated in the previous

section.37 The structure of causal set theory, on the other hand, is captured by the structure

of the set of kinematically admissible causal sets, i.e. of the causal sets complying with

Axioms 1 and 2, or perhaps by the partially ordered structure P of dynamically possible

causal sets, i.e. of sequences of causal sets conforming to the sequential growth dynamics

as explicated in Sect. 2.2.38

Naively, a theory that purports to recover general relativity in a classical limit should do

more than catalog kinematically admissible states. One would think that dynamics is

essential in this endeavor.

Instead of the more ambitious goal of offering a wholesale solution to negotiate the

competing demands of realist and antirealist arguments to which Worrall (1989) aspired,

we may more modestly seek to formulate retail interpretations of particular physical

theories, one by one. What has been offered above was intended in the spirit of the latter.

This more modest goal is both more promising and more appropriate.39 More promising

because in order to make headway on the first ambition, we are faced with a number of

apparently insurmountable obstacles, while the latter goal can be, and in some cases, has

been, achieved. More appropriate since there is no guarantee for any universal attitude

towards scientific theories in general that it will succeed in that either it correctly licenses

the theories’ epistemic pretensions or at least furthers our understanding of science.

Putting aside modesty for a moment, what would be required for a structural realist to

successfully steer clear of the antirealist threat arising from past false theories? About

which of the structures identified in the first paragraph of this section ought we be realist?

Answering this second question first, it seems clear that the realism should be directed at

the structure of particular models rather than of the theory and hence of the entire set of

models. Unless we assume that the sum total of existence consists of a set of physically

possible worlds the structure of which our best scientific theory must reproduce, unless,

that is, we are some sort of modal realists and our modal realism dictates our philosophy of

science, I see little motivation to be realist about the entire abstract structure of the

mathematical formulation of the theory at stake. This is a rather deep point, a point that has

recently come under pressure from various quarters, and a point that most certainly

deserves further consideration than it can be given here.

But if I am right in rejecting a need for realism concerning the entire structure of a

theory, then even a wholesale structural realism should focus its realism on a particular

model, or perhaps models, that are thought to represent aspects of the world. Since the

realism is structural, the claim must be that the model(s) correctly represent(s) the structure

of the physical world. In the now standard terminology of Shapiro (1997), the structural

realist must thus be an in re structuralist, i.e. must maintain that the abstract structure of the

model is instantiated in the physical world. In other words, the structural realist posits an

37 In fact, we may distinguish between kinematic and dynamic models; the former being just causal sets,
while the latter would be sequences of causal sets.
38 One may reasonably think that any theory purporting to recover general relativity in some limit could
only succeed in doing so if appropriate dynamical aspects of the latter are regained as well. The role of
dynamics in understanding just how general-relativistic spacetimes emerge from causal sets defies, so far,
satisfactory explication. This is a restatement of the problem mentioned, and deferred, in footnote 24. I thank
an anonymous referee for pressing me on this point.
39 I am not alone in this view; cf. Esfeld and Lam (2008, forthcoming).
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isomorphism between the model(s) and the aspects of the world represented. We should of

course never expect that any model of any scientific theory is fully isomorphic to the

world. Rather, the claim should be that there exist substructures in the world and that the

model is isomorphic to that substructure or that there are several models of the theory, all

of which are isomorphic to different substructures of the world.40 Of course, the challenge

is to correctly identify the substructure in the world with which the model is supposed to be

isomorphic, all the while avoiding the risk of trivializing the isomorphic achievement by

insisting on some criterion of explanatory strength. I leave the details of this tricky, but

crucial, step to some other occasion.

Even in the absence of a principled account of how to identify the pertinent substruc-

tures in the world, for the wholesale structural realist to meet the antirealist challenge, there

must be isomorphisms between substructures of the models of succeeding theories in the

relevant sense in order to underwrite the necessary structural continuity across scientific

revolutions. While once again I see, to put it mildly, little hope to fulfill the ambitions of

establishing the relevant isomorphisms quite in general, abstracted away from particular

scientific theories, progress may be achieved by studying particular cases of transitions

from one theory to its successor. Above, we identified good reasons not to take causal set

theory as offering a true fundamental theory of quantum gravity and instead to consider it a

toy theory which may reveal some aspects of such a theory. For the sake of illustrating the

point, pretend it did offer such a full theory and supplanted general relativity as our best

theory of gravity. The task, then, is to show this structural continuity in the imagined

transition from general relativity to causal set theory.

Again, it is clear that models in the two theories cannot be fully isomorphic. First, general-

relativistic models are much richer structures with their domains being the points of four-

dimensional differentiable, and therefore continuous, manifolds. This means that there is a

mathematically precise sense in which there are many more elementary events than in a

causal set. Additionally, these ‘extra’ events also exemplify physical relations, thus dashing

any hope of full isomorphism. Moreover, general-relativistic structures contain more rela-

tions, including those arising from the Einstein field equations, than do those of causal set

theory. If there is structural continuity between the two, then it must manifest itself in the

form of partial isomorphisms between their models, i.e. of isomorphisms between causal sets

and substructures of the general-relativistic spacetimes. This brings us back to the problem of

how causal sets give rise to spacetimes discussed in Sect. 2.3.

There, we have noted that most causal sets are not manifold-like and that it remains

unclear how there could be dynamical or otherwise physical mechanisms that choose those

causal sets which do indeed give rise to classical spacetimes. If we believe that general

relativity is a successful theory insofar as it contains models which faithfully describe most

aspects of spatio-temporal structure as we find it in the actual world—and so we should—,

then any quantum theory of gravity will have to let those models emerge in a principled

manner. I will not offer a solution to this problem today, but hasten to insist that solving it

will mean to address the wanted structural continuity between the models of the two

theories.

The example of the relationship between causal sets and relativistic spacetimes thus

illustrates how particular cases of related theories, such as those related by succession, may

be much more fruitful than any aggrandizing general argument as to how successive

theories must in general relate to one another: by identifying which causal sets may be

40 A substructure T of a structure S ¼ hS;Ri is an ordered pair hT ;RjT i consisting of a domain T � S and

the set R of relations restricted to T.
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structurally related to relativistic spacetimes, we may hope to elucidate the problem of

emergence addressed in Sect. 2.3.

In conclusion, let me emphasize again that structuralism may proffer a natural inter-

pretation of particular physical theories such as causal set theory, and perhaps even shed

light on particular instances of transitions between succeeding theories. Little can be found,

however, in causal set theory and how it relates to relativistic spacetime theories that would

rekindle hope for using structuralism as a fully general template in the philosophy of

science.

Acknowledgments I wish to thank Fay Dowker for discussions, and Craig Callender and two anonymous
referees for comments on an earlier draft. At my own peril, I have not heeded all their advice. This project
has been funded in part by the American Council of Learned Societies through a Collaborative Research
Fellowship, the University of California through a UC President’s Fellowship in the Humanities, and the
University of California, San Diego through an Arts and Humanities Initiative Award.

References

Bain, J. (2006). Spacetime structuralism. In D. Dieks (Ed.), The ontology of spacetime (pp. 37–66).
Amsterdam: Elsevier.

Bain, J. (forthcoming). Category-theoretic structure and radical ontic structural realism. Synthese.
Bain, J., & Norton, J. D. (2001). What should philosophers of science learn from the history of the electron?

In J. Z. Buchwald & A. Warwick (Eds.), Histories of the electron: The birth of microphysics
(pp. 451–465). Cambridge, MA: MIT Press.

Bombelli, L., Lee, J., Meyer, D., & Sorkin, R. D. (1987). Space-time as a causal set. Physics Review Letters,
59, 521–524.

Brightwell, G., Dowker, H. F., Garcı́a, R. S., Henson, J., & Sorkin, R. D. (2002). General covariance and the
‘problem of time’ in a discrete cosmology. In K. Bowden (Ed.), Correlations: Proceedings of the
ANPA 23 Conference, August 16–21, 2001, Cambridge, England (pp. 1–17). London: Alternative
Natural Philosophy Association.

Butterfield, J. (2007). Stochastic Einstein locality revisited. British Journal for the Philosophy of Science,
58, 805–867.

Dowker, F. (2005). Causal sets and the deep structure of spacetime. In A. Ashtekar (Ed.), 100 Years of
relativity: Space-time structure: Einstein and beyond (pp. 445–464). Singapore: World Scientific.

Dowker, F., Henson, J., & Sorkin, R. D. (2004). Quantum gravity phenomenology, Lorentz invariance and
discreteness. Modern Physics Letters A, 19, 1829–1840.

Earman, J. (2008). Reassessing the prospects for a growing block model of the universe. International
Studies in the Philosophy of Science, 22, 135–164.

Esfeld, M., & Lam, V. (2008). Moderate structural realism about space-time. Synthese, 160, 27–46.
Esfeld, M., & Lam, V. (forthcoming). The structural metaphysics of quantum theory and general relativity.

Manuscript. Journal for General Philosophy of Science.
French, S. (2010). The interdependence of structure, objects, and dependence. Synthese, 175 (supplement),

89–109.
Georgiou, N. (2005). The random binary growth model. Random Structures and Algorithms, 27, 520–552.
Hawking, S. W., King, A. R., & McCarthy, P. J. (1976). A new topology for curved space-time which

incorporates the causal, differential, and conformal structures. Journal of Mathematical Physics, 17,
174–181.

Henson, J. (2009). The causal set approach to quantum gravity. In D. Oriti (Ed.), Approaches to quantum
gravity: Toward a new understanding of space, time and matter (pp. 393–413). Cambridge: Cambridge
University Press.

Hooft, G. ’t. (1979). Quantum gravity: A fundamental problem and some radical ideas. In M. Lévy &
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Wüthrich, C. (2009). Challenging the spacetime structuralist. Philosophy of Science, 76, 1039–1051.

The Structure of Causal Sets 241

123

http://plato.stanford.edu/entries/structural-realism/
http://doc.cern.ch/archive/electronic/kek-scan/197808143.pdf
http://doc.cern.ch/archive/electronic/kek-scan/197808143.pdf

	The Structure of Causal Sets
	Abstract
	The Set-Theoretical Conception of Structure
	Introducing Causal Sets
	The Kinematics of Causal Set Theory
	Steps Towards a Dynamics of the Theory
	The Emergence of Classical Spacetimes from Causal Sets

	A Structuralist Interpretation of Causal Set Theory
	Zooming Out: Implications for Structural Realism
	Acknowledgments
	References


