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Remark. I claim no originality in the following content, and sometimes not even for the particular formula-

tions used. There are only so many ways in which one can express mathematical definitions grammatically

and with full rigour. In order not to break the flow of the presentation, however, I have not given precise

credit where it is due, but only summarily in the references.

1 Preliminaries

“Structure” is the central concept around which this seminar is organized. Before we look into
its particular conceptualization and the role it plays in various areas of philosophy, such as meta-
physics, epistemology, and philosophy of science, we want to get a quick and dirty introduction
into the way mathematics and its various subfields has thought of structure.

Before I do that, I would like to state that the usual, typically tacit, way philosophers think of a
“structure” is a simplified version of what will be referred to below as a relational structure, i.e.
the set-theoretic notion found in mathematical logic according to which a structure S consists of
an ordered pair 〈O,R〉 which consists of a non-empty set of relations R (“ideology”) as well as a
non-empty set of relata O (“ontology”), the domain of S. But I am getting ahead of myself. Just
a final warning. This standard notion has recently been challenged by various authors. Leitgeb
and Ladyman (2008) explore a graph-theoretic notion of structure, and Roberts (forthcoming)
proposes a group-theoretic one. Landry (2007) argues for conceptual pluralism in that a restriction
to the standard notion (or any one notion, for that matter) cannot do justice to the plethora of
applications. Muller (forthcoming) makes the case that a thoroughgoing structuralism should not
rely on a conceptualization of structure that rests on a definition in terms of more basic concepts.
Instead, he argues, structure should be given as a primitive, encoded in an axiomatization.

2 Structures, informally speaking

Informally speaking, a “structure” is defined on a set (e.g. of objects) as additional mathemati-
cal objects associated with the set. These additional objects defined on a set may be measures,
algebraic structures (groups, fields, etc.), topologies, metric structures (geometries), orders, equiv-
alence relations, and differential structures.

Wikipedia gives examples of structure defined on the set R of the real numbers (entry:“Mathematical
structures”):

• an order: each number is either less or more than every other number

• algebraic structure: there are operations of multiplication and addition that make it into a
field

• a measure: intervals along the real line have a certain length, which can be extended to the
Lebesgue measure on many of its subsets

• a metric: there is a notion of distance between points

• a geometry: it is equipped with a metric and is flat

• a topology: there is a notion of open sets
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Not all of these structures are independent: e.g., its order induces a topology, as does, indepen-
dently, its metric structure. Two structures may combine to yield another structure: e.g., its
order and algebraic structure create an ordered field, and its algebraic structure and its topology
combine to give the structure of a Lie group.

Structures are often characterized by the mappings between sets which preserve them, in the
sense that structures defined on the domain and those defined on the range (or “codomain”) are
equivalent (in some sense). Roughly, an “homomorphism” is a “structure-preserving” map from
one algebraic structure (e.g., ring, group, vector space) to another. Similarly, a “homeomorphism”
(note the difference!) preserves topological structures and a “diffeomorphism” preserves differential
structures. If a bijective homomorphism has an inverse that is also a homomorphism, then we say
it’s a “isomorphism”. Isomorphisms are thus often used to capture structural equivalence: two
structures A and B are structurally identical just in case they are isomorphic, denoted A ' B, i.e.
iff there is an isomorphism from A to B. An isomorphism from a set onto itself is an automorphism.

3 Let’s get mathematical

Let’s try to express some of this more rigorously. In most mathematical disciplines, particularly
in mathematical logic and model theory, a structure is more or less defined as follows (although
there exists a certain variation). A structure consists of a set of elements together with a collection
of finitary functions and relations defined on the set. More precisely, a structure (or τ -structure)
A is an ordered triple 〈A, τ, I〉 consisting of a domain (or universe) A, a signature τ , and an
interpretation function I of τ . The domain A of A, sometimes also denoted dom(A) (or |A|, but
that’s unfortunate, as we will use this to denote the order of a structure of a graph), is just an
arbitrary, usually non-empty, set.

3.1 Signatures...

The signature τ of a structure is an ordered triple 〈Rn, Fn, ar〉 consisting of a (usually countable) set
Rn of n-ary relation symbols, a (usually countable) set Fn of n-ary function symbols, and a function
ar : Rn ∪ Fn → N0 which assigns a natural number (including 0) called arity to every symbol in
Rn ∪Fn. The sets Rn and Fn are required to be disjoint. A symbol in Rn ∪Fn is called n-ary if it
arity is n. A 0-ary function symbol is called a constant symbol. A signature without any function
symbol is called a relational signature, and one without any relation symbol an algebraic signature.
Structures with relational (algebraic) signatures are called relational (algebraic) structures.

A function f is n-ary just in case there exist sets X1, ..., Xn, Y such that f : X1 × · · · ×Xn → Y ,
where X1×· · ·×Xn is the Cartesian product of X1, ..., Xn. The Cartesian product X1×· · ·×Xn of
X1, ..., Xn can be defined as the set of all ordered n-tuples 〈x1, ..., xn〉 such that for all i = 1, ..., n,
xi ∈ Xi. An n-ary relation defined on sets X1, ..., Xn is a set of ordered n-tuples 〈x1, ..., xn〉,
where xi ∈ Xi for all i = 1, ..., n. Thus, an n-ary relation on sets X1, ..., Xn is just a subset of the
Cartesian product X1× · · · ×Xn of these sets. Elements in the set of constant symbols symbolize
non-logical constants than name individuals.

This is terribly abstract. Examples of n-ary function symbols are + and × (both have n = 2),
examples of n-ary relation symbols are ≤ and ∈ (again, in both cases n = 2), examples of constant
symbols are 0 and 1. Here are some examples of signatures:

• A signature could simply consist of a binary relation symbol <, a binary function symbol
×, and a constant (0-ary function) symbol 1.

• A signature of sets is the symbol ∅ denoting the empty set.
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• A signature of groups is a set {e,−1 ,×}, where e is the constant symbol denoting the group
identity, −1 is an unary function symbol denoting the group inverse operation, and × is a
binary function symbol denoting the group multiplication.

• A signature of posets (partially ordered sets) is a singleton {≤}, where ≤ is a binary relation
symbol denoting the partial ordering relation.

Remark (from PlanetMath). Given a signature τ , the set L of logical symbols (from first-order
logic), and a (countably infinite) set V of variables, we can form a first-order language, consisting of
all formulas built from these symbols (in τ ∪L∪V ). The resulting language is uniquely determined
by τ .

3.2 ... and their interpretation

The interpretation function I of τ assigns functions (and constants) and relations to the symbols
of τ . This means that each function symbol f of arity n is assigned an n-ary function on the
domain and each relation symbol R of arity n is assigned an n-ary relation on the domain. The
interpretation of constant symbols assigns them a constant element in the domain. Often, in given
contexts, no notational distinction is made between a symbol σ and its interpretation I(σ).

3.3 An example of a structure: rational numbers

An important class of structures are algebras defined over fields. You have all come across algebras,
although you may not have realized it. The domain of an algebra (which is something more specific
than mere algebraic structures) is a field,1 such as the field of rational numbers Q, of real numbers
R, or of complex numbers C. The standard signature τf for fields is a set consisting of two
binary function symbols + and ×, a unary function symbol −, and two constant symbols 0 and
1. A structure (in this case, an algebra) for a signature of this type thus consists of a set of
elements, with two binary functions, a unary function, and two distinguished elements, although
it doesn’t have to satisfy the field axioms (such as associativity and commutativity for addition
and multiplication). Consider, for instance, the field of rational numbers Q, which can be regarded
as a τf -structure in a straightforward way:

Q = 〈Q, τf , IQ〉, (1)

such that IQ(+) : Q×Q→ Q is addition of rational numbers, IQ(×) : Q×Q→ Q is multiplication
of rational numbers, IQ(−) : Q→ Q is the unary function which takes every rational number q to
−q, IQ(0) ∈ Q is the number 0, and IQ(1) ∈ Q is the number 1.

3.4 Morphisms

Given two structures A and B with the same signature τ , a (τ -)homomorphism from A to B is a
map h : A→ B which preserves the functions and relations. “Preserving functions and relations”
is to be understood as follows:

• For any n-ary function symbol f in τ and any elements a1, ..., an ∈ A, h(f(a1, ..., an)) =
f(h(a1), ..., h(an)).

1A field F is a set on which two operations, usually “addition” and “multiplication,” are defined such that
the following axioms obtain: closure of F under addition and multiplication, associativity and commutativity of
addition and multiplication, additive and multiplicative identity and inverses, and distributivity of multiplication
over addition.
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• For any n-ary relation symbol R in τ and any elements a1, ..., an ∈ A, (a1, ..., an) ∈ R ⇒
(h(a1), ..., h(an)) ∈ R.

A typical problem that mathematicians are interested in is the homomorphism problem: given two
finite relational structures A and B, either find a homomorphism h : A → B if it exists, or else
prove that no such homomorphism exists.

A bijective map f : A → B is called an isomorphism just in case both f and its inverse f−1 are
homomorphisms.

4 Structure and category theory

In the last ten years or so, category theory has gained much purchase among those working on
the foundations of physics, cf. in particular the work by John Baez, Jeremy Butterfield, and Chris
Isham. Many believe that “categories” represent the basic “structures” in mathematics. In this
vein, one can think of categories as an instantiation of structures as defined above, defined in such
general terms that a lot of mathematics can be cast into its form. Let’s do a little bit of basic
category theory to appreciate this point. For this, I heavily rely on Baez (cf. References).

A category is an ordered pair 〈O,M〉 of a set O of objects and a set M of morphisms such that
every morphism has a source and a target object in O. For instance, for an f ∈ M with X ∈ O
as its source and Y ∈ O as its target, one writes f : X → Y . One usually denotes the set of
morphisms from X to Y by Hom(X,Y ).

A category must, furthermore, satisfy the following axioms:

1. For any morphisms g : X → Y and f : Y → Z, there exists a morphism fg : X → Z called
the composite of f and g.

2. This composition is associative: (fg)h = f(gh).

3. For every object X ∈ O, there exists a morphism 1X from X onto itself called the identity
on X.

4. Composition satisfies the left and right unit laws: for any morphism f : X → Y , we have
1Y f = f = f1X .

In this more general setting, an isomorphism is a morphism f : X → Y for which there exists an
“inverse” morphism f−1 : Y → X such that f−1f = 1X as well as ff−1 = 1Y .

The standard example of a category is Set, whose objects are sets and whose morphisms are
functions between the sets. The usual composition of functions satisfies the above stated axioms.
Baez lists the following additional examples of categories:

• Vect: vector spaces as objects, linear maps as morphisms

• Group: groups as objects, homomorphisms as morphisms

• Top: topological spaces as objects, continuous functions as morphisms

• Diff: smooth manifolds as objects, smooth maps as morphisms

• Ring: rings as objects, ring homomorphisms as morphisms
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5 Structure and model theory

According to a standard textbook in the field, “[m]odel theory is a branch of mathematical logic
where we study mathematical structures by considering the first-order sentences true in those
structures and the sets definable by first-order formulas.” (Marker 2002, 1) We are not going
to do full-blown model theory, but want to get a few definitions that will allow us to see how
it conceives of structures. Intuitively, in model theory a structure is a set equipped with some
collection of functions, relations, and elements. Thus, the intuitve characterization of structures
is the one we started out with above in Section 3. But let’s build this up a bit more carefully,
following Marker (2002).

A language L is given by specifying the following: (i) a set of function symbols F and positive
integers nf for each f ∈ F ; (ii) a set of relation symbols R and positive integers nR for each
R ∈ R; (iii) a set of constant symbols C. The number nf indicates that f is a function of nf

variables, and nR tells us that R is an nR-ary relation. Note that any or all of these sets may be
empty. Here are some examples of languages:

• The language of rings is Lr = {+,−, ·, 0, 1}, where +, −, and · are binary function symbols
and 0 and 1 are constants.

• The language of ordered rings is Lor = Lr ∪ {<}, where < is a binary relation symbol.

• The language of graphs is LG = {R}, where R is a binary relation symbol.

What, then, is a structure for which L is the appropriate language? An L-structure M is given
by the following:

(i) a non-empty set M called the universe, domain, or underlying set of M;

(ii) a function fM : Mnf →M for each f ∈ F ;

(iii) a set RM ⊆MnR for each R ∈ R;

(iv) an element cM ∈M for each c ∈ C.

As in Section 3, fM, RM, and cM are the interpretations of the symbols f,R, and c. Typically,
the structure is written as M = 〈M,fM, RM, cM : f ∈ F , R ∈ R, c ∈ C〉.

As an example, let’s look at groups. Consider the language Lg = {·, e} with the binary function
symbol · and the constant symbol e. An example of an Lg-structure, then, is G = 〈G, ·G , eG〉 of
a set G equipped with a binary function ·G and an element eG . For instance, G = 〈R, ·, 1〉 is an
Lg-structure with the usual multiplication ·G = · and eG = 1. Also, graphs, to be discussed in the
next section, are structures in the model-theoretic sense.

6 Structure and graph theory

Graph theory offers an alternative mathematical approach to represent structures. According to
it, graphs are mathematical structures consisting of only two types of basic objects, “vertices”
(or “nodes” or “points”) and “edges” (or “links” or “lines”) between vertices. Graphs can be
partitioned into directed and undirected graphs, depending on whether the relation represented
by the edges between vertices is symmetric or not.2 Graphs can be defined set-theoretically (and

2A partition of a set A is the set A = {A1, ..., Ak} of disjoint subsets of A such that the union ∪A of all sets
Ai ∈ A is A and Ai 6= ∅ for every i.
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Figure 1: The Seven Bridges of Königsberg: Can you find a path through the city that crosses
each bridge exactly once? This problem was solved negatively by Leonhard Euler in 1735 whose
analysis of the problem introduced graph theory.

thus in terms of our discussion above) as ordered pairs of a set of vertices and a set of edges where
the latter are interpreted as ordered pairs of vertices in directed graphs and as unordered pairs in
undirected graphs. Leitgeb and Ladyman (2008) claim that this set-theoretic characterization of
graphs does not do justice to the structural content of graph theory and the actual practice of its
practitioners. Instead, they propose to start out from unlabelled graphs, where different vertices
are taken to be indistinguishable if considered in isolation. In fact, this means that only abstract
graphs are considered, i.e. equivalence classes of labelled graphs under isomorphisms. Labelled
graphs are unlabelled graphs with the additional stipulation that the vertices are distinguished
by, well, you guessed it, labels. But let’s look at the basics of what a graph is more rigorously (cf.
Diestel).

Let us denote by [A]k the set of all subsets of A with k elements. A graph, then, is an ordered
pair G = 〈V,E〉 of sets such that E ⊆ [V ]2, i.e. the elements of E are 2-element subsets of V ,
where it is tacitly assumed that V ∩ E = ∅. The elements of V are called vertices of the graph
G and those of E are its edges. Graphs can be drawn by representing vertices by dots and edges
as lines connecting them if the corresponding two vertices form an edge. How the dots are placed
on a sheet of paper and how the lines are drawn is irrelevant, all that matters is to represent the
information of which pairs of vertices are connected by an edge and which ones are not. Thus,
the two drawings in Fig. 3 represent the same graph. A graph with vertex set V is said to be a
graph on V . The order |G| of a graph G is the number of its vertices. The number of its edges is

Figure 2: The graph on V = {1, ..., 7} with edge set E = {{1, 2}, {1, 3}, {2, 3}, {3, 7}, {4, 5}}.
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denoted by ‖G‖.
We write an edge {x, y} as xy (or yx). Two graphs G = 〈V,E〉 and G′ = 〈V ′, E′〉 are isomorphic,
denoted G ' G′, just in case there exists a bijection φ : V → V ′ with xy ∈ E ⇔ φ(x)φ(y) ∈ E′
for all x, y ∈ V . A map φ like this is called an isomorphism; in case G = G′, it is called an auto-
morphism. An abstract graph is an equivalence class of isomorphic graphs. Thus, a structuralist
is naturally interested in abstract graphs.

A graph property is a class of graphs closed under isomorphism. For instance, “containing a
triangle” is a graph property since if a graph G contains three pairwise adjacent vertices, then
so does every graph isomorphic to it. A graph invariant is a map taking graphs as arguments
that assigns equal values to isomorphic graphs. For instance, |G| and ‖G‖ are two simple graph
invariants.

Figure 3: Union, difference, and intersection (adapted from Diestel (2006, 3)).

The union of two graphs is defined as G ∪ G′ := 〈V ∪ V ′, E ∪ E′〉 and their intersection as
G∩G′ := 〈V ∩V ′, E ∩E′〉. Two graphs are disjoint if G∩G′ = ∅. In case V ′ ⊆ V and E′ ⊆ E, G′

is a subgraph of G (and G a supergraph of G′), denoted G′ ⊆ G. If G′ ⊆ G and for all x, y ∈ V ′, G′
contains all the edges xy ∈ E, then we say that G′ is an induced subgraph of G and that V ′ induces
or spans G′ in G, denoted by G′ =: G[V ′]. Informally speaking, the set-theoretic difference of two
graphs, G−G′, is obtained from G by deleting all the vertices in V ∩ V ′ and their incident edges.
The complement Ḡ of G is defined as 〈V, [V ]2 \ E〉.
For purposes that may or may not become apparent in the course of this seminar, I am also
interested in finding an inversion operation ∗ that relates two graphs G and G∗ just in case the
elements of E are taken to stand in a bijective relation to the elements of V ∗ and E∗ is constructed
such that it contains elements that bijectively correspond to elements in V . For an appropriate
inversion or duality relation like this, under which general conditions are a graph and its inversion
or dual isomomorphic to one another?

7 A ridiculously brief history of structuralism

Structuralism, just like graph theory, started with a Swiss. It was first formulated by Ferdinand
de Saussure as a thesis in linguistics (graph theory, as we have seen above, was initiated by
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Euler). The main idea is, of course, to analyze a field as a complex system of interrelated parts.
The idea has spread to many other field, such as sociology, anthropology, psychology, philosophy,
mathematics, physics,3 psychoanalysis, literary theory, and architecture, just to name a few, and
has led to many different expressions of it in all these fields. Even within philosophy, structuralism
can refer to different ideas and positions.4 Part of our job in this seminar is to at least pursue
some of its strands in philosophy and the foundations of mathematics and physics.

In mathematics, the concept of a structure (but not yet structuralism) gained currency with Felix
Klein’s “Erlangen programme” of 1872, which was an attempt at a “synthesis of geometry as the
study of the properties of a space that are invariant under a given group of transformations.”5

Starting in the 1930s, structuralism in mathematics reached new levels of rigour at the hands of the
French group of mathematicians who called themselves Nicolas Bourbaki. Chapter 4 (“Structures”)
of their influential book Théorie des ensembles (Set Theory) explicates a very general notion of
“structure” and of “isomorphism”.
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Additional resources used:

• Planet math entries (http://planetmath.org/): “Structure”, “Signature”

• Wikipedia entries: “Isomorphism”, “Mathematical structure”, “Seven Bridges of Königsberg”

• Wolfram MathWorld entries (http://mathworld.wolfram.com/): “Isomorphism”

3Cf. e.g. http://plato.stanford.edu/entries/physics-structuralism/.
4Cf. e.g. the Wikipedia entry on structuralism in philosophy of science, which seems to conceive of structuralism

differently from the mainstream literature around structural realism and its structuralist cousins in the foundations
of physics.

5http://www-history.mcs.st-andrews.ac.uk/Biographies/Klein.html
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