REICHENBACH ON SPACE (CH.I)

In which space(time) do we live?

Hans Reichenbach Kimdir ?

(d. 26 Eylül 1891, Hamburg; ö. 9 Nisan 1953, Los Angeles)

- On non-Euclidean geometry
- The epistemological problem of space

EUCLID'S 5 AXIOMS

LEAVE OUT 5TH AXIOM?

consequences for geometry and physics?

NON-EUCLIDEAN GEOMETRY

AXIOMATIC GEOMETRY -> ANALYTIC GEOMETRY

shifts

RIEMANNIAN ---> PSEUDO-RIEMANNIAN

EXAMPLE: SPHERE

Fig. 1. Circumference and diameter of a circle on the surface of a sphere.

intrinsic geometry vs. extrinsic geometry

THE EPISTEMOLOGICAL PROBLEM OF SPACE

Fig. 2. Projection of a non-Euclidean geometry on a plane.

UNIVERSAL FORCE F on plane
E such that
a) F affects all materials in the same way
b) there are no insulating walls
*what about light?

Problem: Can we tell in which geometry we live despite the UNIVERSAL FORCE AMBIGUITY?

THE EPISTEMOLOGICAL PROBLEM OF SPACE

Geometry=Geometry'+UNIVERSAL FORCE

Problem: Can we tell in which geometry we live despite the UNIVERSAL FORCE AMBIGUITY?

UNIVERSAL FORCES?

Fig. 3. Sketch of an apparatus for the measurement of heat expansion.

 vs. DIFFERENTIAL FORCES (affects different materials differently)

UNIVERSAL FORCES?

THERMOMETER...

Curved space

UNIVERSAL FORCES?

- Force in the sense of geometrical change
- Force in the usual physics' sense? Not really (cf. Weatherall, Manchak 2014)

UNIVERSAL FORCES F s.t. geometry'+F=geometry

coincidence preserving forces

THE EPISTEMOLOGICAL PROBLEM OF SPACE

Geometry=Geometry'+UNIVERSAL FORCE

Problem: Can we tell in which geometry we live despite the UNIVERSAL FORCE AMBIGUITY?

Reichenbach's answer: question presupposes that talk about geometry *and* universal force is well-defined (it is not)

COORDINATIVE DEFINITIONS

- physics builds on
 - reductive definitions
 - AND coordinative definitions (co-defs)
- co-defs are *partly* arbitrary

EXCURSION

COORDINATIVE DEFINITIONS

- unit of length
- congruence of length: comparison of two unit lengths at different locations

EXCURSION

COORDINATIVE DEFINITIONS

DEFINITION OF CONGRUENCE

- "The problem does not concern a matter of cognition but of definition. There is no way of knowing whether a measuring rod retains its length when it is transported to another place..."
- one way (in our simple world): transported rigid rods register geometry and only geometry
- another way (in our and other worlds): each space point has own unit

COORDINATIVE DEFINITIONS

- rigid rod: solid bodies not affected by diff. forces — universal forces are neglected
- realized if internal forces >> external forces

REICHENBACH'S SOLUTION

- "... whether AB=BC is not a matter of cognition but of definition. If in E the congruence distances is defined in such a way that AB=BC, E will be a surface with a hump in the middle; if the definition reads differently, E will be a plane."
- geometry hinges on preceding coordinative definition (not a question of true or false)

CONCERNS

not being able to measure the right geometry does not mean that it does not exist, or?

technical impossibility

Fig. 2. Projection of a non-Euclidean geometry on a plane.

logical impossibility

CONCERNS

But can't we single out the geometry which is simplest?

AGAIN: You cannot get started without coordinative definitions. Question should be rephrased as: which coordinative definition is the simplest one?

As a matter fact: coordinative definition such that a) the logical simplest and b) in continuity with our previous notions

Favour the rigid rod definition for congruence?

OTHER SOLUTIONSSKLAR

- REDUCTIONIST (REICHENBACH)
- ANTI-REDUCTIONIST
 - SKEPTIC
 - CONVENTIONALIST (?)
 - APRIORIST (KANTIAN, NEO-KANTIANS)

WHY "REDUCTIONIST"?

- "same meaning for theories with exactly the same observational content" — equally true theories
- no reductionism in the strong sense: no reduction of the actual meaning to observational content

APRIORIST'S REPLIES

Reply 1

measurement devices are built and used under the presupposition of Euclidean geometry

how can they then be used to infer non-Euclidean geometry?

APRIORIST'S REPLIES

Reply 2

Visual self-evidence forces us to believe in the "truth" of Euclidean geometry

THE UPSHOT

- no one runs around shouting: how long is a meter? how long is it really?
- similarly, we should not run around asking: which pair of (geometry, universal force) is the right one
- BEFORE talking about units/geometry/..., we have to make our coordinative definitions

MORE?

- continue reading chapter I to the end
- for extensive material on the other positions, see Sklar
- interesting cross relations of debate to
 - hole argument, AB-effect, gauge symmetries, ...?