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Remark. I claim no originality in the following content, and sometimes not even for the particular formula-

tions used. There are only so many ways in which one can express mathematical definitions grammatically

and with full rigour. In order not to break the flow of the presentation, however, I have not given precise

credit where it is due, but only summarily in the references.

1 What is a set?

It is actually already a very hard question to state exactly how a set differs from the (mereological)
fusion of its elements, and how it differs from other types of collections. We ignore these subtle,
yet important, questions, at least for now and hope that the concept of a ‘set’ will emerge through
the following work. So let’s just dive in.

Definition 1 (Set). “A set is any collection into a whole of definite well-distinguished objects of
our intuition or our thought.” (Georg Cantor, 1895 in Lexikon der Mathematik)

Definition 2 (Set, alternative definition). “A set is a many, which can be thought of as one, i.e.,
a totality of definite elements that can be combined into a whole by a law.”

The identity criterion for sets is rather straightforward and demands (and is usually stated, in a
weaker form, as an axiom in axiomatic set theory, e.g., as an axiom of ‘extensionality’) that two
sets are identical just in case they have exactly the same elements (or ‘members’).

1.1 Specifying a set

There are two ways to specify sets: either we do it extensionally and use curly brackets between
which all its elements are listed, or we do it intensionally by giving some sort of constructive rule,
which allows us to uniquely determine what its elements are, in which case we say that the rule
or condition ‘generates’ the set.

We can thus extensionally define a set S by stating S = {Mercury, Venus, Earth, Mars, Jupiter,
Saturn, Uranus, Neptune}. More abstractly, S = {a, b, c} says that S is a set whose elements are
a, b, and c.1 Alternatively, we could specify the set intensionally by stating that S is the set of all
planets in our solar system. Abstractly, if F (x) is a determinate property or condition, we can say
that the set S consists of all objects x which exemplify property F (x) or satisfy condition F (x).
In our notation:

S = {x : F (x)}.
The planetary example can thus be written as S = {x : x is a planet in our solar system}.

The naive comprehension or existence axiom states that every genuine condition or property F (x)
does in fact generate a set via above procedure. As we will see shortly, this axiom spells trouble.

1.2 Elementary relations

The membership relation, denoted by the infix ∈, obtains between two sets or between an ‘atom’
and a set just in case one is an element of the other. Apart from identity, this is the only non-
logical symbol which enters set theory primitively. In the previous case, we thus write, for example,
a ∈ S. Since d is not an element of S, we write d 6∈ S or ¬(d ∈ S).

Another key relation is the subset relation, denoted by the infix ⊆.

1Important note: I often distinguish between a set and its elements, as is common in introductory texts, by
using uppercase Latin letters for the former and lowercase Latin letters for the latter. But this is unprincipled. I
should, as advanced texts usually do, just use one or the other.
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Definition 3 (Subset). A set S is a subset of another set T just in case every element of S is
also an element of T . Symbolically, S ⊆ T :↔ ∀a(a ∈ S → a ∈ T ).

Definition 4 (Proper subset). S is a proper subset of T , symbolically S ⊂ T , just in case that
S ⊆ T and T 6⊆ S, i.e., every element of S is an element of T , but not every element of T is an
element of S.

In order to give an exemplary list of all subsets of a given set, we need another definition:

Definition 5 (Empty set). The empty set is the (unique) set which contains no elements. Sym-
bolically, the empty set is denoted by ∅.

Why should we think that there is such a thing as an empty set? Apart from its great practical
utility in mathematics, it helps in formalizations of the intuitive difference between, as Raymond
Smullyan (1992) says, an empty theatre and no theatre at all. Nota bene: no curly brackets are
used for the empty set, except in the alternative notation of {}.

With this in place, we can now state the following example:

Example 1. For a set S = {a, b, c}, the following sets are subsets: {a}, {b}, {c}, {a, b}, {a, c}, {b, c},
{a, b, c} and ∅.

It is important to note that for any set S, S and ∅ are always among its subsets.

Let us define another concept while we are at it (not a relation):

Definition 6 (Power set). The power set P(S) of the set S is a set whose elements are exactly
the subsets of S. Symbolically, P(S) := {T : T ⊆ S}.

Example 2. The power set of S = {a, b, c} is P(S) = {{a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}, ∅}.

For a finite set S (more on those below) of cardinality n, the cardinality of P(S) is 2n, hence the
name.

Here are a few more important relations:

Definition 7 (Relative complement). The relative complement S\T of T in S, or the set-theoretic
difference of S and T , is the set of all elements in S, but not in T . Symbolically, S\T := {x : x ∈ S
and x 6∈ T}.

Definition 8 (Intersection). The intersection of two sets S and T is the set consisting of those
elements which are contained in both S and T . Symbolically, S ∩ T := {x : x ∈ S and x ∈ T}.

Definition 9 (Union). The union of two sets S and T is the set consisting of those elements
which are contained in either S or T . Symbolically, S ∪ T := {x : x ∈ S or x ∈ T}.

It is straightforward to generalize the definitions of intersection and union to an arbitrary number
of sets. In this case, the relation is symbolized not by an infix, but by a prefix, like so:

Definition 10.
⋂
S := {x : ∀T ∈ S(x ∈ T )}.

Definition 11.
⋃
S := {x : ∃T ∈ S(x ∈ T )}.

A bit more terminology.

Definition 12. Two sets are disjoint just in case their intersection is the empty set. A set of sets
is pairwise disjoint if every pair of sets is disjoint, i.e., if no object belongs to more than one of
the sets.
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1.3 Some special and specially important sets

Arguably the most important one of those—the empty set—, we have already encountered. An-
other special class of sets is that of singleton sets, i.e. of sets containing just one element such
as the singleton set containing Aristotle, {Aristotle}. Importantly, Aristotle is different from
{Aristotle}. Some sets are important because they have additional algebraic structure which makes
them very important in mathematics. Here are some famous examples of sets of numbers with
such additional algebraic structure (from http://en.wikipedia.org/wiki/Set_(mathematics)

#Special_sets):

• P, the set of all primes: P = {2, 3, 5, 7, 11, 13, 17, ...}.

• N, the set of all natural numbers: N = {0, 1, 2, 3, ...}.

• Z, the set of all integers: Z = {...,−2,−1, 0, 1, 2, ...}.

• Q, the set of all rational numbers: Q = {a/b : a, b ∈ Z, b 6= 0}. Since all integers z can be
expressed by the fraction z/1, it follows that Z ⊂ Q.

• R, the set of all real numbers. Apart from all the rational numbers in Q, R contains ‘irrational’
numbers such as π, e, and

√
2 (and others that cannot be defined).

• C, the set of all complex numbers: C = {a+ bi : a, b ∈ R}.

• H, the set of all quaternions: H = {a+ bi+ cj + dk : a, b, c, d ∈ R}.

It is an interesting fact that P ⊂ N ⊂ Z ⊂ Q ⊂ R ⊂ C ⊂ H. Since these are proper subset relations,
does this mean that the sets get larger and larger as we move from left to right? The answer to
this question is not evident, since these sets are all ‘infinite’, in a sense yet to be defined. As it
turns out, this is a rather deep question in the foundations of mathematics. Interestingly, it only
turns on a seemingly simple activity that you have all learned a long time ago: counting.

2 Counting all the way to infinity

In order to answer the question in the previous paragraph, and in order to conceptualize infinity
in a mathematically rigorous sense, we need to understand what it means to say that two sets S
and T are of the ‘same size’, or are ‘equinumerous’, or have ‘the same cardinality’, or have the
same ‘power’. Usually, we mean that the elements of the two sets can be matched in a one-one
fashion [see blackboard]. This means that there exists a map f : S → T which is one-to-one and
onto, or ‘bijective’ as mathematicians say. This map (or ‘function’) f is a non-ambiguous rule
which associates with each element x ∈ S an element f(x) ∈ T .

Bijectivity or, equivalently, the relationship of one-to-one and onto conjoined is defined as follows
[see also blackboard]:

Definition 13 (Bijective map). A map f : S → T is bijective just in case it satisfies the following
two conditions:

1. For any elements x1, x2 ∈ S, if x1 6= x2, then f(x1) 6= f(x2) (‘one-to-one’).

2. For all y ∈ T , there exists an x ∈ S such that y = f(x) (‘onto’).

If there exists a bijective map between two sets, we say that its elements can be brought into a
one-one correspondence. Thus, two sets S and T are the same size, or have the same cardinality,
or are equinumerous iff there exists a bijective map f : S → T . By setting T = N, this definition
allows us to count the elements of a set and to say exactly how many elements a given set has.

Definition 14. For a given n ∈ N, a set has exactly n elements if its elements can be brought
into one-one correspondence with the set of natural numbers from 1 to n.
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It immediately follows that the above defined set of all planets in our solar system has eight
elements and is thus equinumerous to the set of chemical elements up to oxygen, the set of all
days of Hanukkah, the set of apparitions appearing to Macbeth in Act 4, Scene 1 of Macbeth, and
the set of women appearing in François Ozon’s 8 femmes.

2.1 Finite and infinite sets

From these definitions, one can then easily articulate a rigorous definition of when sets are ‘finite’
or ‘infinite’.

Definition 15 (Finite set). A set S is finite iff there exists an n ∈ N such that S has n elements.
Equivalently, S is finite just in case if it cannot be brought into one-one correspondence with a
proper subset of itself.

Definition 16 (Infinite set). A set S is infinite iff it is not finite, i.e., if there exists no n ∈ N
such that S has n elements. Equivalently, S is infinite just in case it can be brought into a one-one
correspondence with a proper subset of itself.

Exercise 1. Suppose that S is an infinite set. Prove that by removing one single element, the set
remains infinite. Hint: use the first part of the definitions of ‘finite’ and ‘infinite’.

Exercise 2. Show that the set N is infinite by stating a proper subset S ⊂ N and a bijective map
f : N→ S.

2.2 Grasping the infinite: Hilbert’s Hotel

Infinity is a strange animal. In order to appreciate this, let us engage in a little thought experiment
called ‘Hilbert’s Hotel’, after David Hilbert, which beautifully illustrates this strangeness. It will
also serve as a propaedeutic for Georg Cantor’s diagonalization proof. What follows in this section
and the next is closely based on Smullyan (1992, Ch. 18).

Suppose you have a hotel of one hundred rooms. There is exactly one guest in each of the rooms.
Late at night, a traveller arrives and requests a room for the night. Can she be accommodated?
The problem is that neither the traveller nor any of the guests are prepared to share rooms,
which renders her accommodation impossible since one cannot put 101 people into a one-one
correspondence with 100 rooms.

But this is very different in Hilbert’s Hotel, which has an infinite number of rooms. If it is equally
fully booked by an infinite number of lonely, non-sharing guests, the manager can accommodate
the late arrival, as long as everyone is prepared to move rooms.

Exercise 3. How can this be achieved?

But just as everyone went back to sleep after having accommodated the traveller, a bus full of
new guests arrives, all seeking a bed for the night. The problem is that it’s a very large bus; in
fact, the bus contains infinitely many new guests! The surprising fact is that all of them can be
accommodated as long every original guest is prepared to move to a new room once.

Exercise 4. How?

Hilbert’s Hotel, as it turns out, it just one hotel of Hilbert’s Chain of infinitely many hotels with
infinitely many rooms each. Suppose that all hotels of Hilbert’s Chain are fully booked with
exactly one guest in each room of each hotel. One day, the management decides to remodel all but
one of the chain’s hotels. In order to loose no business, they hatch a plan of how to accommodate
all the guests in all the hotels which close down in the one hotel which will remain open during
the remodelling of the others.

Exercise 5. Is this possible? If so, how? If not, why not?

4



Exercise 6. Which of the two infinities—the Chain’s total number of rooms prior to and during
the remodelling—, if any, is larger?

These examples show some of the strange properties of infinite sets. For instance, Hilbert’s Hotel
and Chain show that (and how) there exist bijective maps between infinite sets and some of their
proper subsets. I have stated this above as part of the definition of what it is for a set to be
infinite. In fact, however, this can be shown as a theorem given just the first part of the definitions
of finite and infinite sets. As strange as this seems, it is not really paradoxical. And it has certainly
been known, at least for special cases, for quite a while. E.g., Galileo has pointed out that the
natural numbers and their squares can be brought into one-one correspondence by the bijective
map f(n) = n2.

Despite his advocacy of actual infinities—as opposed to the Aristotelian doctrine that there only
exist potential infinities—, particularly as concerning the number of individuals in our world,
Gottfried Leibniz did not countenance actual infinities of numbers, because, as he claimed, it is
inconsistent with the axiom that the whole is greater than any proper subpart. But cases such as
Hilbert’s Hotel show that this is not true at least in a very general class of theories. This can also
be seen from another simple thought experiment [see blackboard].

Thus, even though there is a sense in which Hilbert’s Chain contains more rooms than the original
Hilbert’s Hotel—in the sense that it contains all the rooms of the latter and some more—the
number of its rooms is not numerically larger than the number of rooms in the original hotel.
Above, we stated that two sets are equinumerous, or are numerically the same, if one can find a
one-one correspondence between them. This is still the case for infinite sets, but we have to tread
carefully here. It is not the case for infinite sets that a set S is ‘numerically smaller than’ T (or
S has ‘fewer elements than’ T ) if one can bring S into a one-one correspondence with a proper
subset of T . The problem with this characterization is that it can be the case that S stands in
such a correspondence with a proper subset of T and T stands in such a correspondence with a
proper subset of S.

In order to see this, consider the set O (⊂ N) of odd numbers and the set E (⊂ N) of even numbers.
It is easy to find a bijective map between O and E, e.g. (where n ∈ N):

1, 3, 5, 7, 9, ... 2n+ 1...

l l l l l l

0, 2, 4, 6, 8, ...2n...

This means that O and E are equinumerous. However, it is also rather straightforward to find a
bijection between O and a proper subset of E, as follows:

1, 3, 5, 7, 9, ... 2n+ 1...

l l l l l l

2, 4, 6, 8, 10, ...2n+ 2...

At the same time, however, we can do the same for E and a proper subset of O:

0, 2, 4, 6, 8, ... 2n...

l l l l l l

3, 5, 7, 9, 11, ...2n+ 3...

So this would suggest then that on this definition, O would be numerically smaller, equal, and
larger than E! This shows that the definition must be refined for infinite sets:
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Definition 17. A set S is smaller than another set T , or T is larger than S iff the following two
conditions are met:

1. There exists a bijective map between S and a proper subset of T ;

2. T cannot be brought into a one-one correspondence with a proper subset of S.

This definition works also for infinite sets and reduces to the intuitive characterization given above
for finite sets, since condition (2) is automatically satisfied for finite sets if condition (1) is.

In order to formulate a theory of the infinite, one needs to answer the following question: are
any two arbitrary infinite sets necessarily equinumerous, or can they have different sizes? Georg
Cantor (1845-1918), who made seminal contributions to set theory, answered this question in his
theory of transfinite numbers. This theory met with fierce resistance even from some of the greatest
minds of the time, such as Leopold Kronecker and Henri Poincaré, and later from Hermann Weyl,
L E J Brouwer, and Ludwig Wittgenstein. Before I give you the answer, or you read on, pause
and do the following

Exercise 7. What do you think, are all infinite sets the same size or different?

2.3 Cantor’s heaven

I obviously don’t know what your answer to Exercise 7 was, but Cantor first suspected that any
two infinite sets would be of the same size. He spent twelve years trying to prove this when he
found a counterexample. This means that there exist different kinds of infinities. In fact, as we
will see, there exist infinitely many!

Finite sets are all ‘countable’ in the sense that we can count how many elements they contain.
But this concept can be extended so as to include some infinite sets as ‘countable’:

Definition 18 (Countable set). A set is called countable just in case it has the same cardinality
as a subset of N. Equivalently, a set S is countable iff there exists an injective map from S to N.

Exercise 8. Convince yourself that there exist infinite sets which are countable. By the way, such
as set is called countably infinite or denumerable—or simply countable of course. An infinite set,
which is not countable, is called nondenumerable.

It is clear from Definition 18 that N is a countably infinite set. Thus, Cantor’s question becomes
whether every infinite set is countable. Cantor’s strategy was to study infinite sets which seemed
too large to be denumerable; yet, he found a trick to count them.

Let’s start with another thought experiment. Suppose I write a natural number on a piece of
paper and your task is to guess it. It is straightforward to devise a strategy which will succeed in
doing this in a finite number of steps. Let’s make your task a little bit harder: this time I write
an integer number on a piece of paper.

Exercise 9. Can you formulate a strategy which guarantees your success in a finite number of
steps? This is essentially the same task as solving Exercise 4 on Hilbert’s Hotel.

Because this is also possible, it means that N and Z have the same cardinality (which makes Z
denumerable), despite initial appearances that Z might be twice as large as N (modulo 0).

Now the next task is clearly more difficult. Suppose I write two natural numbers on a piece of
paper and your task is to guess both of them at the same step. Only if your answer is the pair of
numbers identical to the one I wrote will the task be solved.

Exercise 10. Do you think there is a strategy which guarantees success in a finite number of
steps? In other words, the question is whether pairs of natural numbers are denumerable, just as
natural or integer numbers are. If so, provide the strategy. If not, why not?
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Now let’s make it a bit harder yet. Suppose that now you don’t only have to guess the two
numbers, but also the order in which they are written down.

Exercise 11. Devise a strategy to solve this in a finite number of steps.

As you get a knack on devising counting strategies, you should be able to answer the following
question:

Exercise 12. Is the set Q+ of positive rational numbers denumerable?

The answer to this question is part of what incited the strong reactions against Cantor’s theory
of transfinite numbers mentioned above.

Now to another, yet harder, problem. Suppose I write down a finite set of natural numbers. You
do not know either how many numbers I wrote down or which is the largest number among those
on the paper. Do you think there is a strategy to solve this problem in finitely many steps?

Exercise 13. There is, as every finite set of natural numbers is denumerable. But how can we
denumerate the set of finite sets of natural numbers?

This leaves open the question regarding the set of all sets of natural numbers—finite and infinite.
It was Cantor’s great discovery to show that this set was nondenumerable. Before we prove this,
let us consider the cardinality of the real numbers R and—as a warm-up exercise—prove that R
is nondenumerable.

Exercise 14. Prove that R is nondenumerable. If you haven’t seen this before, you will probably
not find the answer. But don’t despair—it took Cantor a long time to realize this himself and
we will go over this carefully in class! Proving this will introduce you to Cantor’s ingenious
‘diagonalization technique’.

Let’s return to the main item of business, to prove Cantor’s Theorem. First, consider the following
fact:

Fact 1. The set of all sets of natural numbers is nondenumerable. In other words, the power set
P(N) of N is nondenumerable.

Smullyan sketches the proof as follows. Suppose you have a book with countably infinitely many
pages, numbered consecutively. In order to show that the above set is not denumerable it suffices
to show that there exists a set of natural numbers which cannot be listed on any page of this book.

Exercise 15. Your task now is to describe this set which cannot be given on any page of the book.

Please note that this essentially makes use of the diagonalization technique. [blackboard]

Exercise 16. The set of finite sets of natural numbers, as we have seen, is denumerable. What
about the set of infinite sets of natural numbers—is it denumerable?

We have thus shown that there is no one-one correspondence between P(N) and N (or, a fortiori,
any subset of N). But can we conclude that P(N) is thus of larger cardinality than N? According
to Definition 17, we also need to show that there exists a bijective map between N and a proper
subset of P(N).

Exercise 17. Show this. Hint: we have actually already found such a map.

The cardinality P(N) is thus larger than that of N. This means that the infinity of the number
of sets of natural numbers is larger than the infinity of the natural numbers themselves. In other
words, there are infinities of different ‘sizes’, or different cardinalities. This immediately leads to
the question of whether there are sets even larger than P(N). As Cantor famously found, the
answer to this question is affirmative. That P(N) is larger than N is only a special case of his
famous theorem:
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Fact 2 (Cantor’s Theorem). For every set A, the set P(A) of all subsets of A is larger than A.

The proof of the theorem is essentially similar to our answer to Exercise 15. The proof idea is
illustrated by Smullyan as follows. Imagine a universe in which each set of inhabitants forms a
club. The inhabitants decide that each club gets named after an inhabitant of the universe such
that no two clubs bear the name of the same inhabitant and such that each inhabitant lends its
name to exactly one club. To this end, it is not necessary that the inhabitant is a member of the
club which is named after him. It is clear that this project fails in a universe with a finite number
of inhabitants, for n inhabitants, the number of clubs is 2n. Fortunately, it turns out that this
universe has infinitely many inhabitants, which is why no one sees a reason why the plans couldn’t
be realized. However, every scheme that is attempted fails.

Exercise 18. Why is it impossible to find such a naming scheme, and how does this relate to
Cantor’s Theorem?

[Proof of Cantor’s Theorem on the blackboard]. As a corollary, this immediately entails that there
are sets larger than P(N), viz. P(P(N)). In fact, it entails that there are infinities of infinitely
many differing sizes, as this construction can always be repeated. In other words, there are larger
sets for every set, and hence there are infinitely many sizes or cardinalities of infinite sets. This
hierarchy of infinite cardinal numbers is often referred to as ‘Cantor’s heaven’.

3 Paradoxes and the foundations of set theory

Exercise 19. A warmup exercise for the set-theoretic paradoxes: the quarter and the penny (from
Smullyan, p. 234ff).

3.1 The paradox of the universal set and Russell’s paradox

Continuing to follow Smullyan’s presentation, let us see how all of this concerns the foundations
of set theory. In 1897, Cantor discovered a paradox, now often called the ‘paradox of the universal
set’. Suppose U is the set of all sets (the universal set), i.e. U := {x : x is a set}. According to
Cantor’s Theorem (Fact 2), there is always a larger set, viz. P(U). But could it be that there is a
set larger than the set of all sets? Surely, P(U) must be a subset of U , since U contains all sets.
How can a subset of a set be larger than the set itself? It can’t, and that’s the paradox.

When Bertrand Russell studied Cantor’s proof, searching for errors, in 1901, he found what is
now called Russell’s paradox and is similar to Cantor’s (and was also found by Zermelo in 1900).
Informally, the idea behind it is as follows. Call those sets which are not elements of themselves
normal. The set of all books surely is normal, since it is itself not a book. A set is abnormal if it
does contain itself. An example would be the set of all things which are not books. Clearly, the
set of all non-books is a not a book and hence an element of itself.

Exercise 20. Now consider the set R of all normal sets. Is R normal or not? Show that it cannot
be determined whether R is normal or abnormal. Hint: Make sure to derive a contraction for all
possibilities.

This is Russell’s paradox. A more formal version is obtained if we remind ourselves that the
following is an axiom of naive set theory as formulated by Cantor2

Axiom 1 (Naive comprehension). ∃y∀x(x ∈ y ⇔ F (x)) for any predicate F in a free variable x.

In other words, for any predicate there exists a set which contains all and only those objects which
exemplify the property denoted by the predicate. Consider the property of not containing itself.

2I say ‘remind’ because we encountered this above, stated informally. I mentioned that it will get us in trouble;
Russell’s paradox is that trouble.
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According to the naive comprehension (or existence) Axiom 1, there exists a set containing all and
only objects not containing themselves. If we thus substitute x 6∈ x for F (x) and apply existential
and universal instantiation, we get

z ∈ z ⇔ z 6∈ z. (1)

This is a contradiction and we have Russell’s paradox again. Russell’s paradox is a simplification
of Cantor’s paradox in that it does not rely on the concept of cardinality.

In 1919, Russell proposed a simple analogue of this paradox in the form of a barber who lives
in a small village, allegedly in Sicily. He says of himself: “I shave all and only the men in my
village who do not shave themselves.” Thus, the barber doesn’t shave any village man who shaves
himself and every man in the village who does not shave himself is shaved by the barber. Does he
shave himself? If he does, he shaves somebody (namely himself) who shaves himself, in violation
of the rule that he shaves nobody who shaves himself. If he doesn’t, then he is a village man who
doesn’t shave himself and is thus shaved by him, in accordance to the rule that he shaves all men
in the village who don’t shave themselves. So we have a contradiction again.

Exercise 21. So, does he shave himself or not? How would you resolve the paradox?

Similarly to the resolution of the barber paradox, one can see that the assumption of Axiom 1
leads to inconsistency, as evidenced by Russell’s paradox, and must thus be discarded. Axiom 1
also leads to Cantor’s version of the paradox if we assume that the relevant property is that of
being a set. If we do, the set of all sets also exists. On the one hand, this set can be arbitrarily
large; on the other hand, by Cantor’s Theorem, for each set there exists a larger set. But this is
the inconsistency again. The error consists in assuming that there is such a set in the first place.

Any solution to these paradoxes must block trouble-making sets such as U and R, while at the
same time allow for sufficiently rich mathematics, e.g., so as to still allow Cantor’s heaven. The
rejection of Axiom 1, however, challenged the very foundations of mathematics at the time and
nourished the suspicion that mathematics may not be reconcilable with logic.

3.2 Consequences for the foundations of mathematics

At the time, the most worked-out framework for mathematics was the one by Gottlob Frege.
Frege’s system was designed to realize his vision of deriving all of mathematics from logic and
set theory. We will have a closer look at the philosophy of his ‘logicism’ later in the term. For
now, it suffices to note that apart from a few axioms of logic, he used only one axiom concerning
set, viz. essentially the ‘(naive) comprehension axiom’, Axiom 1. Frege managed to derive all sets
required to do mathematics at the time from this single assumption (plus the logic). The first
order of business was to get the empty set. One can obtain that by stating a property, which is
not exemplified, such as ‘being dissimilar from oneself’ or ‘being non-identical with itself’. Since
this gives us an admissible predicate, we know by Axiom 1 that there exists the set of all objects
with the property it denotes. But since there are no such objects, the set is empty. Next, take
two arbitrary objects x and y. There is the property of ‘being either identical to x or to y’, which
gives us, again via Axiom 1, the set {x, y} with exactly the elements x and y and none else. This
is still the case if x and y happen to be identical. In this case, we simply have the singleton set
{x}.

Thus we have the empty set ∅—and thus an object—and a constructive rule to produce more
sets. To get the construction going, build the set of exactly those objects which are identical to
∅. There is only one such object, and we thus have the singleton set {∅}, consisting only of the
empty set. Note that ∅ and {∅} are different sets—the latter is a set of one element, the former
has no elements. We can reapply that same step to obtain {{∅}}, the set whose only element is
the set whose only element is the empty set. We continue doing this to get {{{∅}}}, {{{{∅}}}}, ....
We thus obtain an infinitude of sets which can serve as natural numbers. In fact, this is how
Ernst Zermelo introduced the natural numbers: he named the empty set ‘0’, {∅} ‘1’, {1}—which
is another name for {{∅}}—‘2’, etc. This procedure gives us all the natural numbers, which
according to Axiom 1 also form a set—the set of natural numbers N.
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Given a set S, one can further say that there is the property of ‘being a subset of S’. According
to Axiom 1, there consequently exists a set of all subsets of S, i.e., what we called the power set
P(S) of S. Consider the property of ‘being an element of at least one element of S’. Hence there
exists a set of all elements of all elements of S, called the set union U(S) of S. For instance, if S
is the set of all clubs, then U(S) is the set of all club members.

So far so good, as it seems as if we can get all the sets which matter in mathematics in this
manner. But there is one problem with all of this: the theory is inconsistent! Sanctioned by
Axiom 1, we can assume the existence of the set of all normal sets, which leads us directly to the
contradiction known as Russell’s paradox. Similarly for the set of all sets, which leads to Cantor’s
version of the contradiction. Despite this inconsistency, Frege’s work was soon recognized (e.g. by
Russell) to contain the seeds of a revolution in the foundations of logic and mathematics. One of
the reasons for this was because the inconsistency could actually be eradicated. One of the ways
to do that (but not the only one) was to ditch Axiom 1 and to replace it with what became known
as the Zermelo-Fraenkel axiomatization of set theory. Before we delve into that, let’s briefly look
at Russell’s own solution.

3.3 Russell’s theory of types

The general idea of Russell’s theory of types was the recognition that sets are something funda-
mentally different from elements of sets. Russell constructed a hierarchy of types:

Level 0. individuals a, b, c, ... (don’t have set-theoretic elements)

Level 1. sets whose elements live on level 0: {a}, {a, b}, ...

Level 2. sets whose elements live on level 0 or 1: {a}, {a, {b, c}}, ...

Level 3. etc.

It is important to insist that only those sets exist, which exist at a level. How does this solve the
paradoxes?

(a) At what level is the universal set U? U ∈ U ⇒ cannot exist on any level and thus doesn’t
exist.

(b) At which level do we find R := {x : x is a set ∧ x 6∈ x}? R cannot be an element of itself and
thus doesn’t exist either.

While this perfectly solves the paradoxes, the overall system proposed by Russell and Alfred
North Whitehead in their monumental Principia Mathematica (1910, 1912, 1913) was generally
too complicated for many to adopt it, even though many notational innovations remain with
us today. And there was another problem: the theory of types required an axiom of infinity,
postulating infinitely many individuals at level 0, for otherwise each level consists only of finitely
many objects.

Exercise 22. Why is this a problem for Russell’s logicistic program? We may have to get back
to this one when we look at logicism.

4 Zermelo-Fraenkel set theory

Before I write down all the axioms in their full glory, let’s approach the axiomatization due to
Ernst Zermelo (1871-1953), with later improvements by Adolf (later: Abraham) Fraenkel (1891-
1965), more informally, again following Smullyan. The Zermelo-Fraenkel axiomatization is now
the most widely used axiomatic theory of sets.
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4.1 Zermelo set theory

Zermelo started out by replacing the axiom of ‘unrestricted comprehension’—our Axiom 1—by
what is called the axiom schema of specification (‘Aussonderungsaxiom’) or of restricted com-
prehension, because it does not permit every class as set.3 As compared to Russell’s theory of
types, which achieves the elimination of the contradictions by restricting the syntax of admissible
predicates quite significantly, Zermelo’s path didn’t restrict the syntax, but instead restricted ‘com-
prehension’ such that it was no longer the case that all classes qualified as sets. Zermelo showed
a quarter century later that his axiom (scheme) of restricted comprehension was a theorem of set
theory as improved by Fraenkel by the introduction of the axiom schema of replacement (‘Erset-
zungsaxiom’) and was thus obsolete as an independent assumption. But we are getting ahead of
ourselves.

Informally stated, Zermelo’s axiom schema of specification is as follows:

Axiom 2 (Axiom schema of specification). Given an arbitrary property as well as an arbitrary
set S, then the set of all elements of the set S which exemplify the property exists.

Because of the need for a prior set S, we can no longer speak of a set of all x with a certain
property. Instead, we can speak of all x ∈ S with this property. No contradiction can be derived
from assuming Axiom 2 as far as we know. And it suffices for the purposes of mathematical
practice: when mathematicians speak of the ‘set of all numbers’, or the ‘set of all points in a
place’, etc, they talk about objects and sets whose existence was ordained before.

It should also be clear that this dissolves Russell’s paradox, as the set of all normal sets cannot
be constructed anymore on the basis of Axiom 2. However, for a given set S, we can create the
set T of all normal elements of the set S (i.e., the set T of all those sets in S which do not contain
themselves). This does not lead to a paradox, since T is not—cannot be—an element of S, even
though it is a subset of it.

To say that a set T is an element of a set S means that S is a collection of objects, one of which is
T . But to say that T is a subset of S means that all elements of T are also elements of S, but this
does not entail that T itself is one of these elements. Suppose that S is the set of all humans on
Earth and T is the set of human Earthlings who are left-handed. Surely, all left-handed humans
are also humans. Hence T ⊂ S. But the set of all left-handed humans is not itself a human (even
though all its elements are), and hence T 6∈ S.

Exercise 23. Why is the set B of all normal elements of A not itself an element of A, even
though it is certainly a subset of A?

Exercise 24. Show that the universal set U cannot exist under the assumption of Axiom 2. This
resolves Cantor’s paradox of the universal set.

As a result of giving up Axiom 1, Zermelo could no longer construct the sets needed for math-
ematics as we did in §3.2 and had to introduce specific axioms to guarantee the existence of
∅, {x, y},P(S), and U(S). Similarly, the existence of the natural numbers N had to be underwrit-
ten by a separate axiom, the Axiom of Infinity. Zermelo (1908) postulates the following axioms
for set theory:4

Axiom 3 (Extensionality (Axiom der Bestimmtheit)). “If every element of a set M is also an
element of N and vice versa... then M ≡ N . Briefly, every set is determined by its elements.”

Axiom 4 (Elementary sets (Axiom der Elementarmengen)). “There exists a set, the null set, ∅,
that contains no element at all. If a is any object of the domain, there exists a set {a} containing
a and only a as element. If a and b are any two objects of the domain, there always exists a set
{a, b} containing as elements a and b but no object x distinct from them both.”

3This axiom, or axiom schema, actually has a few more names in the literature.
4Except for a few typographical corrections, all English translations are from Wikipedia (http://en.wikipedia.

org/wiki/Zermelo_set_theory). This translation is not very faithful to the original, but commits no gross mistake
regarding content. The typographical changes have been made both to improve textual accuracy and continuity
with the present text.
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Axiom 5 (Separation (Axiom der Aussonderung)). “Whenever the propositional function F (x)
is definite for all elements of a set M , M possesses a subset MF containing as elements precisely
those elements x of M for which F (x) is true.”

This axiom is essentially Axiom 2 above. It is ultimately responsible for the elimination of the
paradoxes as it suffices to prove the following important theorem:

Fact 3. Every set M possesses at least one subset M0 that is not an element of M .

Proof (as given by Zermelo 1908, 265). “For each element x of M , it is determinate whether x ∈ x
or not; this possibility x ∈ x is in itself not excluded by our axioms. If M0 is the subset of M
which contains, by [Axiom 5], all those elements of M for which x 6∈ x, then M0 cannot be an
element of M . For either M0 ∈M0 or not. In the first case M0 contained an element x = M0, for
which x ∈ x, against the definition of M0. Hence, it is certainly not the case that M0 ∈M0, and if
M0 were an element of M , it would have to also be an element of M0, which was just excluded.”
This means that the reductio assumption M0 ∈M is false, proving the theorem.

Zermelo concludes from Fact 3 that not all objects x in the universal domain B can be elements
of one and the same set, which means, in other words, that the domain B itself is not a set. This
precludes the universal set and “disposes the ‘Russellian antinomy’ as far as we are concerned.”
(ibid.)

Axiom 6 (Power set (Axiom der Potenzmenge)). “To every set T there corresponds a set P(T ),
the power set of T , that contains as elements precisely all subsets of T .”

Axiom 7 (Union (Axiom der Vereinigung)). “To every set T there corresponds a set U(T ), the
union of T , that contains as elements precisely all elements of the elements of T .”

Axiom 8 (Choice (Axiom der Auswahl)). “If T is a set whose elements all are sets that are
different from ∅ and mutually disjoint, its union U(T ) includes at least one subset S1 having one
and only one element in common with each element of T .”

This is the famous and controversial Axiom of Choice, which Zermelo considers an “unobjection-
able logical principle”. Zermelo states that one can also express this axiom by saying that it is
always possible to choose a particular element m,n, r, ... from each element M,N,R, ... of T and
to collect them to a set S1.

Axiom 9 (Infinity (Axiom des Unendlichen)). “There exists in the domain at least one set Z
that contains the null set as an element and is so constituted that to each of its elements a there
corresponds a further element of the form {a}, in other words, that with each of its elements a it
also contains the corresponding set {a} as element.”

Axiom 9 establishes the existence of infinitely many sets. Axioms 3-9 constitute the axiomatic
basis of Zermelo set theory, or the theory ZC.

4.2 The well-ordering theorem and the Banach-Tarski paradox

Assuming the Axiom of Choice (Axiom 8), Zermelo was able to prove the so-called well-ordering
theorem (also called ‘Zermelo’s theorem’), which asserts that every set can be well-ordered.

Definition 19. A set S is well-ordered by a strict total order just in case every non-empty subset
of S has a least element under the ordering.

Orders (total, strict total, partial, etc) are binary relations defined on some set, the ‘domain’.

Definition 20 (Total order). A set S is totally ordered under a binary relation, here denoted by
the infix ≤, just in case for all a, b, c ∈ S, the following three conditions hold:

1. If a ≤ b and b ≤ a, then a = b (antisymmetry);
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2. If a ≤ b and b ≤ c, then a ≤ c (transitivity);

3. a ≤ b or b ≤ a (totality).

Exercise 25. Show that totality in Definition 20 entails reflexivity, i.e., ∀a ∈ S, a ≤ a.

Definition 21 (Partial order). A set S is partially ordered under a binary relation, denoted by
the infix ≤, just in case for all a, b, c ∈ S, the following three conditions hold:

1. If a ≤ b and b ≤ a, then a = b (antisymmetry);

2. If a ≤ b and b ≤ c, then a ≤ c (transitivity);

3. a ≤ a (reflexivity).

Note that because of the result established in Exercise 25 any totally ordered set is also partially
ordered, but not vice versa. We can now define the remaining two undefined concepts used in
Definition 19:

Definition 22. The least element of a subset S of a partially ordered set T is an element of S
which is smaller than or equal to any other element of S, where ‘smaller than’ and ‘equal to’ is
defined in terms of the partial order of T . The greatest element is defined dually.

Definition 23 (Strict total order). For every total order ≤, there exists an associated asymmetric
relation, denoted by the infix < and called a strict total order, which can be defined in two equivalent
ways:

• Either a < b iff a ≤ b and a 6= b;

• or a < b iff not b ≤ a (making < the inverse of the complement of ≤).

Exercise 26. An asymmetric relation R is a binary relation defined on a domain S such that
(∀a, b ∈ S,Rab→ ¬Rba). Show that the asymmetry of a relation entails that it is irreflexive, i.e.
∀a ∈ S,¬Raa.

It turns out that the well-ordering theorem is equivalent to the Axiom of Choice, as is ‘Zorn’s
lemma’, in the sense that in first-order logic either one of the two conjoined with the (remaining)
axioms of Zermelo-Fraenkel set theory (see §4.3 below) entails the other.5

Fact 4 (Well-ordering theorem (Zermelo’s theorem)). For every set S, there exists a well-ordering
with domain S.

For the proof (which is not very hard), cf. e.g. Halmos 1960.

One of the most intriguing paradoxes of modern mathematics arises as a consequence of the well-
ordering theorem: the ‘Banach-Tarski paradox’. This paradox was first stated by Stefan Banach
and Alfred Tarski (1924), who showed how it is possible to cut a solid 3-dimensional ball into
finitely many pieces and to reassemble the pieces into two solid balls of the same size as the
original ball. The proof of this crucially depends on assuming the Axiom of Choice (Axiom 8) or
the well-ordering theorem. Please read the article by Robert French if you’re interested. You are
also invited to watch this video for an illustration of how to use the Banach-Tarski paradox to
multiply oranges: http://www.youtube.com/watch?v=uFvokQUHh08.

5This is not true in second-order logic, where the well-ordering theorem is strictly stronger than the Axiom of
Choice.
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4.3 Zermelo-Fraenkel set theory

For most purposes, the theory ZC introduced in §4.1 suffices to satisfy the demands on a set theory.
However, it does not allow the construction of ordinal numbers (cf. Moore 1990) and Axiom 5
(Separation) insists on ‘definite’ functions (or formulae) without specifying what is meant by
that. Fraenkel (and Thoralf Skolem) thus proposed a slightly modified theory, adding an axiom
scheme of replacement and an axiom of regularity, while freeing some of the other axioms from
redundancy. This resulted in what is today the most commonly used set of axioms for a set theory,
the Zermelo-Fraenkel axioms.

Starting out from an informal notion of ‘classes’, which look just as sets naively construed prior to
the advent of axiomatic set theories. All sets as characterized by the axioms to follow are classes,
but there are some classes which are not sets (so-called ‘proper classes’), most notoriously the
universal class V = {x : x = x}. So like most authors, let’s presuppose a non-empty domain
of discourse as part of our semantics of the first-order logic in which the following set theory is
axiomatized. This assumption is harmless, and certainly underwritten by Axiom 15 (Infinity)
below, which entails the existence of a set.

In the formal statements of the axioms (ignore them if you want), we will use the notion of formu-
lae, which are constructed from the ‘atomic’ formulae a ∈ b and a = b by means of the usual logical
connectives φ ∧ ψ (conjunction), φ ∨ ψ (disjunction), ¬φ (negation), φ→ ψ (implication), φ↔ ψ
(equivalence) and quantifiers ∀xφ (universal) and ∃xφ (existential). This means that fundamen-
tally, we introduce ‘∈’ and ‘=’ as the only non-logical symbols. If a formula has free variables,
we often write φ(x1, ..., xn) and mean that the free variables are among the xi’s. Anyway, if you
want to ignore the formal statement of the axioms below and focus on the informal statements
which always precede the formal ones, I think you can safely forget about everything I said in this
paragraph.

Here are the Zermelo-Fraenkel axioms, given both informally and formally:6

Axiom 10 (Extensionality). If S and T have the same elements, then S = T . In other words,

∀S∀T [∀x(x ∈ S ↔ x ∈ T )→ S = T ].

It should be noted that the converse, viz. if S = T , then ∀x(x ∈ S ⇔ x ∈ T ), is an axiom of
predicate calculus. The axiom simply expressed the idea that a set is determined by its ‘extension’,
i.e. by its elements.

Axiom 11 (Pairing). For any a and b, there exists a set {a, b} that contains exactly a and b. In
other words,

∀a∀b∃z∀x(x ∈ z ↔ x = a ∨ x = b),

or, more simply, there exists a set z whose only members are a and b (which themselves may be
sets).

Given Axiom 10 (Extensionality), the set z is guaranteed to be unique, which justifies our notation
{a, b}. You may be surprised that we start by stating an axiom about sets of two members, rather
than just one. But really, we have just included those sets: the singleton {a} is defined as the set
{a} := {a, a}. At this point, we can also define an ordered pair 〈a, b〉 of elements or sets a and b
by

〈a, b〉 := {{a}, {a, b}}.

Exercise 27. Show that this definition satisfies the intuitive requirement on ordered pairs that
〈a, b〉 = 〈c, d〉 iff a = c ∧ b = d.

Axiom 12 (Schema of Separation). If P is a property (with parameter p), then for any S and p,
there exists a set T = {x ∈ S : P (x, p)} that contains all those x ∈ S which exemplify property P .
In other words, for a formula φ(x, p), and for any S and p, there exists a set T = {x ∈ S;φ(x, p)}:

∀S∀p∃T∀x(x ∈ T ↔ x ∈ S ∧ φ(x, p)).
6I consulted various sources for this, in an attempt to get a list as standard as possible. Among them are Hajnal

and Hamburger 1999, Jech 2003, Tiles 1989, and http://en.wikipedia.org/wiki/Zermelo-Fraenkel_set_theory.
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This is called an ‘axiom schema’ rather than just an ‘axiom’ because it is strictly speaking a
distinct axiom for each formula φ(x, p). Again by Axiom 10 (Extensionality), the set T is unique.
As a consequence of Axiom 12 (Schema of Separation), we can introduce set intersection and
difference, as follows:

S ∩ T := {x ∈ S : x ∈ T} and S \ T := {x ∈ S : x 6∈ T},

respectively. Compare this with Definitions 7 and 8 above. Moreover, it follows that the empty
class ∅ = {x : x 6= x} is a set—our beloved empty set as originally introduced in Definition 5. The
empty set exists and is unique just in case at least one set exists. But existence of at least one set
is guaranteed by Axiom 15 (Infinity).

An important consequence of Axiom 12 (Schema of Separation) is that the universal class V as
defined above is a proper class (and hence not a set), for otherwise, S = {x ∈ V : x 6∈ x} would
also be a set.

Axiom 13 (Union). For any S, there exists a set T = ∪S, the union of all elements of S. In
other words, for any S, there exists a set T = ∪S:

∀S∃T∀x[x ∈ T ↔ ∃z(z ∈ S ∧ x ∈ z)].

As a result of this axiom, for every S, there exists a unique set

T = {x : ∃z ∈ S(x ∈ z)} =: ∪{z : z ∈ S} = ∪S,

interpreted as the unique set T whose elements are exactly the elements of the elements of a given
set S. Jointly with Axiom 11, this axiom entails that for any two sets S, T , there is a unique
set S ∪ T := ∪{S, T} (which can be generalized to any number of sets). A corresponding ‘axiom
of intersection’ is quite unnecessary, as we were able to define it above, simply using Axiom 12
(Schema of Separation).

Axiom 14 (Power Set). For any S, there exists a set T = P(S), the set of all subsets of S. In
other words, for any S, there exists a set T = P(S):

∀S∃T∀x(x ∈ T ↔ x ⊆ S).

At this point of setting up the axioms, we can now introduce quite a bit of useful stuff. For
instance, one can use the concept of power sets to define the Cartesian product of two sets, define
n-ary relations, fields, functions, etc. I am not going to do this, except to say how to define
the Cartesian product. If you are interested to see how this can be used to define relations and
functions, please see my handout on structure, available here: https://wuthrich.net/teaching/
2010_246/246HandoutStructureMath_2010.pdf.

Definition 24 (Cartesian product). The Cartesian product S × T of two sets S and T is the set
of all ordered pairs such that the first element is an element of S, and the second one of T :

S × T := {〈x, y〉 : x ∈ S ∧ y ∈ T}.

Strictly speaking, we have not yet established that S × T is a set and that it exists. Noting that
x, y ∈ S ∪ T and {x}, {x, y} ∈ P(S ∪ T ), we recognize that

〈x, y〉 = {{x}, {x, y}} ∈ P(P(S ∪ T )).

This now allows us to recognize that the Cartesian product of two sets is a set itself:

S × T ⊆ P(P(S ∪ T )).

Axiom 15 (Infinity). There exists an infinite set.

We will not state this more formally. Although possible, it would involve introducing new notions
we will not otherwise need. Note that this is the only axiom making an existential assertion;
courtesy of this axiom, we are guaranteed that there are sets.
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Axiom 16 (Schema of Replacement). If a class F is a function, then for any S, there exists a
set T = F (S) = {F (x) : x ∈ S}. In other words, for each formula φ(x, y, p), the following formula
is an Axiom (of Replacement):

∀x∀y∀z[φ(x, y, p) ∧ φ(x, z, p)→ y = z]→ ∀S∃T∀y[y ∈ T ↔ (∃x ∈ S)φ(x, y, p)].

Don’t worry if the formal statement becomes too unwieldy for your taste. But just so you know,
there are more unwieldy formulations out there! Generally, the exact formulation of the axiom
statements varies from source to source. This is not normally a problem, since different for-
mulations can be equivalent. One different but equivalent formulation of Axiom 16 (Schema of
Replacement) is that if a class F is a function and dom(F ) is a set, then codom(F ) is also a set.7

Axiom 17 (Regularity). Every non-empty set S contains an element T which is disjoint from S.
In other words,

∀S[∃T (T ∈ S)→ ∃T (T ∈ S ∧ ¬∃X(X ∈ S ∧X ∈ T ))].

There is an important consequence of this axiom: no set is an element of itself. Suppose we have
a set S and apply Axiom 17 (Regularity) to {S}, which is the singleton set of S whose existence
is guaranteed by Axiom 11 (Pairing). By Axiom 17 (Regularity), there must be an element of
{S} which is disjoint from {S}. But the only element of {S} is S, of course, and thus it must be
that S is disjoint from {S}. Since S ∈ {S}, it follows that S 6∈ S, by the definition of disjoint sets
(Definition 12).

Axiom 17 (Regularity) plays a lesser role in mathematics, as most results still obtain without it.
It does play a role in establishing well-ordering results and results concerning ordinal numbers.

Axiom 18 (Choice). Every family of non-empty sets has a choice function. In other words, for
a set S of non-empty elements, there exists a function f from S to the union of all elements of
S—the ‘choice function’—such that for all T ∈ S, f(T ) ∈ T .

This statement of the axiom of choice (AC) is equivalent to the one given in Axiom 8 (Choice),
where each choice function is replaced by its codomain. For finite sets, Axiom 18 (Choice) is quite
unnecessary, as it follows as a theorem from Axioms 10–17. This is not the case for infinite sets.

There are a dozen or so statements used across mathematics which are demonstrably equivalent
to the AC. The first one to note is Fact 4, the well-ordering or Zermelo’s theorem. There are other
statements in set theory, such as Tarski’s and König’s theorems, which are equivalent to the AC.
Apart from statements in abstract algebra, functional analysis, topology, and mathematical logic,
which are equivalent to the AC, a famous lemma from order theory is as well:

Fact 5 (Zorn’s lemma). Every non-empty partially ordered set in which every totally ordered
subset has an upper bound contains at least one ‘maximal element’, i.e. an element that is not
smaller (as defined by the ordering relation) than any other element of the subset.

Note that I have labelled Zorn’s lemma a ‘fact’, which of course it is given the AC. For a list of
statements equivalent to the AC, consult http://en.wikipedia.org/wiki/Axiom_of_choice.

The theory resulting from Axioms 10–18 is denoted ‘ZFC’ or ‘ZF’, depending on whether Axiom
18 (Choice) is also assumed or not. For some time, it was an open question not only whether ZFC
was consistent, but also whether the AC was indeed independent of Axioms 10–17 in the sense
that neither it nor its negation could be derived from the other axioms. Assuming the consistency
of ZF, Kurt Gödel and Paul Cohen settled this question, Gödel proving that the negation of the
AC is not a theorem of Axioms 10–17 and that hence ZFC is consistent, and Cohen showing that
the AC is not theorem of Axioms 10–17 by establishing that ZF¬C, i.e. ZF conjoined with the
negation of the AC, is consistent.

7I am sure most of you have encountered the terms ‘domain’ and ‘codomain’ (or ‘range’) of a function. What
you may not know is that these concepts can be generalized to relations, such that for instance for a binary relation
R, the domain of R is defined as the set dom(R) := {x : ∃y〈x, y〉 ∈ R} and the codomain of R is defined as the set
codom(R) := {y : ∃x〈x, y〉 ∈ R}.
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5 The continuum hypothesis

One important question remains: given that the set P(N) of all subsets of natural numbers is
larger than the set N of natural numbers itself, does there exist a set S such that it is larger than
N, but smaller than P(N)? To ask differently, is there a set whose cardinality lies between that of
N and P(N), or is P(N) the next largest set after N?

Cantor asked the same question, but the answer is not known to this day. He conjectured that P(N)
is indeed the next largest set after N, and this conjecture is known as the continuum hypothesis
(CH). The reason for calling this conjecture the continuum hypothesis is because one can bring the
set P(N) into a one-one correspondence to the set of points on a infinite line, which is sometimes
called the continuum. Thus, P(N) has the same size as the continuum. The question then is
whether there exist sets whose size is larger than N but smaller than the continuum. More
generally, Cantor also hypothesized that there does not exist, for any infinite set S, a set whose
size lies between that of S and that of P(S). This is called the generalized continuum hypothesis,
or simply GCH. Some people, including Smullyan (who again served as basis for the informal part
of this section), believe that to proof the GCH or its negation is the biggest outstanding problem
in all of mathematics.

What the status of the CH is depends on your larger point of view about the status and function
of mathematical theories. Cantor himself believed that the CH was true and expended significant
intellectual energies to prove it. Formalists do not consider it to be true or false simpliciter, but
make it a question of which axiomatic system is used. In some of these, the CH is true, while
in others, it is false. Both the conjunction ZFC∧GCH of ZFC and the GCH and the conjunction
ZFC∧¬GCH of ZFC and the negation of the GCH are consistent—assuming that ZFC itself is
consistent, which is what most mathematicians believe. This is because the GCH can be shown
to be independent of ZFC. This independence was established, again, by Gödel and Cohen. Gödel
showed in 1940 that the GCH cannot be disproved in ZFC, and Cohen showed in 1963 that the
GCH cannot be proved in ZFC either. Together, these results mean that the GCH is independent
of ZFC, similarly to the infamous Fifth Axiom’s independence of the rest of Euclid’s axioms. One
thing to note, however, is that ZF∧GCH entails the AC. This means that, while both independent
of ZF, the GCH is a strictly stronger claim than the AC because, to repeat, the entailment does
not hold in the other direction.

On the other hand, realists/platonists insist that the CH is either true or false—i.e., there is a
fact of the matter whether or not the CH is true—and that we simply don’t know which. The
reason for our ignorance, they continue, is not because the question is in principle unanswerable,
but simply because we don’t yet know enough about sets. The platonist Gödel predicted that the
correct or true axiomatic system for set theory, once found, will show that the CH (and the GCH)
is false.

In order to just make a connection to what we could go on to study in more detail, let me state the
CH more concisely and more formally. The cardinality of N is usually denoted ℵ0 (‘aleph-naught’).
Since it can be shown that the cardinality of R is the same as that of P(N) (although we didn’t
show this here, cf. Jech (2003, 37) or the appendix ‘Basic set theory’ to Jech (2002)), it is 2ℵ0 . As
the AC guarantees that there exists a smallest cardinal number ℵ1 larger than ℵ0, the CH can be
expressed very compactly:

Hypothesis 1 (Continuum).

2ℵ0 = ℵ1.

Exercise 28. Prove the continuum hypothesis.

This can be generalized for any ‘ordinal’ α:

Hypothesis 2 (Generalized continuum).

2ℵα = ℵα+1.

At this point, I could go on about transfinite mathematics, ordinals and cardinals, and the won-
derful world of the alephs, the Löwenheim-Skolem theorem and a theorem due to Gödel, but we
will not cover this in this course. If you are interested, please read Chapter 10-12 of Moore 1990.
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